In [1]:
import numpy as np
import bqplot.pyplot as plt
In [2]:
np.random.seed(0)
x_data = np.random.randn(100)
In [3]:
fig = plt.figure(padding_y=0)
hist = plt.hist(x_data)
fig
In [4]:
hist.count
Out[4]:
In [5]:
# Changing the number of bins
hist.bins = 20
In [6]:
# normalizing the count
fig = plt.figure(padding_y=0)
hist = plt.hist(x_data, normalized=True)
fig
In [7]:
# changing the color
hist.colors=['orangered']
In [8]:
# stroke and opacity update
hist.stroke = 'orange'
hist.opacities = [0.5] * hist.bins
In [9]:
fig = plt.figure(padding_y=0)
hist = plt.hist(x_data, normalized=True)
fig
In [10]:
# count is the number of elements in each interval
hist.count
Out[10]:
In [11]:
# mid points are the mid points of each interval
hist.midpoints
Out[11]: