The HeatMap mark represents a 2d matrix of values as a color image. It can be used to visualize a 2d function, or a grayscale image for instance.
HeatMap is very similar to the GridHeatMap, but should be preferred for a greater number of points (starting at around 100x100), to avoid overloading the browser. GridHeatMap offers more control (interactions, selections), and is better suited for a smaller number of points.
In [ ]:
import numpy as np
from ipywidgets import Layout
import bqplot.pyplot as plt
from bqplot import ColorScale
x is a 1d array, corresponding to the abscissas of the points (size N)y is a 1d array, corresponding to the ordinates of the points (size M)color is a 2d array, $\text{color}_{ij}$ is the intensity of the point $(x_i, y_j)$ (size (N, M))Scales must be defined for each attribute:
LinearScale, LogScale or OrdinalScale for x and yColorScale for color
In [ ]:
x = np.linspace(-5, 5, 200)
y = np.linspace(-5, 5, 200)
X, Y = np.meshgrid(x, y)
color = np.cos(X**2 + Y**2)
In [ ]:
fig = plt.figure(title='Cosine',
layout=Layout(width='650px', height='650px'),
min_aspect_ratio=1, max_aspect_ratio=1, padding_y=0)
heatmap = plt.heatmap(color, x=x, y=y)
fig
In [ ]:
from scipy.misc import ascent
Z = ascent()
Z = Z[::-1, :]
aspect_ratio = Z.shape[1] / Z.shape[0]
In [ ]:
img = plt.figure(title='Ascent', layout=Layout(width='650px', height='650px'),
min_aspect_ratio=aspect_ratio,
max_aspect_ratio=aspect_ratio, padding_y=0)
plt.scales(scales={'color': ColorScale(scheme='Greys', reverse=True)})
axes_options = {'x': {'visible': False}, 'y': {'visible': False}, 'color': {'visible': False}}
ascent = plt.heatmap(Z, axes_options=axes_options)
img