In [ ]:
##Unsupervised Analysis of Days of the week

In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn')

import pandas as pd
import numpy as np

from sklearn.decomposition import PCA
from sklearn.mixture import GaussianMixture

In [2]:
##GET DATA

In [3]:
from packages.data import get_fremont_data
data = get_fremont_data()

In [4]:
pivoted = data.pivot_table('Total', data.index.time, columns = data.index.date)
pivoted.plot(legend = False, alpha = 0.01)


Out[4]:
<matplotlib.axes._subplots.AxesSubplot at 0x115e46438>

In [5]:
##PRINCIPAL COMPONENT ANALYSIS

In [6]:
x = pivoted.fillna(0).T.values
x.shape


Out[6]:
(1732, 24)

In [7]:
x2 = PCA(2, svd_solver = 'full').fit_transform(x)
x2.shape


Out[7]:
(1732, 2)

In [8]:
plt.scatter(x2[:, 0], x2[:, 1])


Out[8]:
<matplotlib.collections.PathCollection at 0x11ae00470>

In [9]:
##UNSUPERVISED CLUSTERING

In [10]:
gmm = GaussianMixture(2).fit(x)
labels = gmm.predict(x)

In [11]:
plt.scatter(x2[:, 0], x2[:, 1], c = labels, cmap = 'rainbow')
plt.colorbar()


Out[11]:
<matplotlib.colorbar.Colorbar at 0x11b022390>

In [12]:
fig, ax = plt.subplots(1, 2, figsize=(14, 6))

pivoted.T[labels == 0].T.plot(legend = False, alpha = 0.1, ax = ax[0])
pivoted.T[labels == 1].T.plot(legend = False, alpha = 0.1, ax = ax[1])

ax[0].set_title('Purple Cluster')
ax[1].set_title('Red Cluster');



In [13]:
##COMPARING WITH DAY OF WEEK

In [14]:
dayofweek = pd.DatetimeIndex(pivoted.columns).dayofweek

In [15]:
plt.scatter(x2[:, 0], x2[:, 1], c=dayofweek, cmap='rainbow')
plt.colorbar();



In [16]:
##ANALYZING OUTLIERS

In [17]:
dates = pd.DatetimeIndex(pivoted.columns)
dates[(labels == 1) & (dayofweek < 5)]


Out[17]:
DatetimeIndex(['2012-11-22', '2012-11-23', '2012-12-24', '2012-12-25',
               '2013-01-01', '2013-05-27', '2013-07-04', '2013-07-05',
               '2013-09-02', '2013-11-28', '2013-11-29', '2013-12-20',
               '2013-12-24', '2013-12-25', '2014-01-01', '2014-04-23',
               '2014-05-26', '2014-07-04', '2014-09-01', '2014-11-27',
               '2014-11-28', '2014-12-24', '2014-12-25', '2014-12-26',
               '2015-01-01', '2015-05-25', '2015-07-03', '2015-09-07',
               '2015-11-26', '2015-11-27', '2015-12-24', '2015-12-25',
               '2016-01-01', '2016-05-30', '2016-07-04', '2016-09-05',
               '2016-11-24', '2016-11-25', '2016-12-26', '2017-01-02',
               '2017-02-06', '2017-05-29'],
              dtype='datetime64[ns]', freq=None)

In [ ]: