In [1]:
from IPython.display import IFrame, display, HTML
import pandas as pd
import numpy as np
from bokeh.models import ColumnDataSource, Plot, Circle, Range1d, LinearAxis, TapTool, HoverTool, Text
from bokeh.embed import file_html
from bokeh.plotting import vplot
from bokeh.resources import INLINE
from bokeh.models.actions import Callback
from bokeh.models.widgets import Slider
In [2]:
# Links via http://www.gapminder.org/data/
population_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0XOoBL_n5tAQ&output=xls"
fertility_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0TAlJeCEzcGQ&output=xls"
life_expectancy_url = "http://spreadsheets.google.com/pub?key=tiAiXcrneZrUnnJ9dBU-PAw&output=xls"
def get_data(url):
# Get the data from the url and return only 1962 - 2013
df = pd.read_excel(url, index_col=0)
df = df.unstack().unstack()
df = df[(df.index >= 1962) & (df.index <= 2013)]
df = df.unstack().unstack()
return df
fertility_df = get_data(fertility_url)
life_expectancy_df = get_data(life_expectancy_url)
population_df = get_data(population_url)
In [3]:
# have common countries across all data
fertility_df = fertility_df.drop(fertility_df.index.difference(life_expectancy_df.index))
population_df = population_df.drop(population_df.index.difference(life_expectancy_df.index))
# get a size value based on population, but don't let it get too small
population_df_size = np.sqrt(population_df/np.pi)/200
min_size = 3
population_df_size = population_df_size.where(population_df_size >= min_size).fillna(min_size)
In [4]:
sources = {}
for i, country in enumerate(fertility_df.index):
fertility = fertility_df.loc[country]
fertility.name = 'fertility'
life = life_expectancy_df.loc[country]
life.name = 'life'
population = population_df_size.loc[country]
population.name = 'population'
new_df = pd.concat([fertility, life, population], axis=1)
new_df['country'] = country
sources['_' + str(i)] = ColumnDataSource(new_df)
years = list(fertility_df.columns)
xdr = Range1d(1, 8)
ydr = Range1d(20, 85)
plot = Plot(
x_range=xdr,
y_range=ydr,
title="",
plot_width=800,
plot_height=400,
outline_line_color=None,
toolbar_location=None,
)
xaxis = LinearAxis()
yaxis = LinearAxis()
plot.add_layout(xaxis, 'left')
plot.add_layout(yaxis, 'below')
tooltips = "@index<br />@country"
plot.add_tools(HoverTool(tooltips=tooltips))
default_selection = {
'0d': {'flag': False, 'indices': []},
'1d': {'indices': [0]},
'2d': {'indices': []}
}
for source in sources.values():
source.selected = default_selection
empty_circle = Circle(x='fertility', y='life', fill_color=None, line_color=None, size='population')
red_circle = Circle(x='fertility', y='life', fill_color='#F6931F', line_color='#995a13', size='population')
plot.add_glyph(source, empty_circle, selection_glyph=red_circle, nonselection_glyph=empty_circle)
javascript_list_of_sources = str(list(sources.keys())).replace("'", "")
code = """
var years = %s;
var new_selection = years.indexOf(slider.get('value'));
var new_selection_object = {'indices': [new_selection]};
var sources = %s;
sources.forEach(function(s) {
s.attributes.selected['1d'] = new_selection_object;
s.trigger('change');
});
""" % (years, javascript_list_of_sources)
callback = Callback(args=sources, code=code)
slider = Slider(start=1962, end=2013, value=1, step=1, title="Year", callback=callback)
callback.args["slider"] = slider
layout = vplot(plot, slider)
html = file_html(layout, INLINE, "gapminder")
In [5]:
IFrame(src="https://www.youtube.com/embed/hVimVzgtD6w?t=3m57s", width=420, height=315)
Out[5]:
For the impatient, skip to 3m 58s. Otherwise enjoy a great example of statistics communication.
In [6]:
display(HTML(html))