In [1]:
import pandas as pd
import os
from activitysim import activitysim as asim
# this is where I unzipped the MTC data
SRCDIR = "/Users/ffoti/data/activitysim"
# and where it's going to
TGTFILE = "../example/data/mtc_asim.h5"

In [2]:
store = pd.HDFStore(TGTFILE, "w")

In [3]:
col_map = {
    "HHID": "household_id",
    "AGE": "age",
    "SEX": "sex",
    "hworkers": "workers",
    "HINC": "income",
    "AREATYPE": "area_type"
}

In [4]:
df = pd.read_csv(os.path.join(SRCDIR, "landuse", "tazData.csv"), index_col="ZONE")
df.columns = [col_map.get(s, s) for s in df.columns]
store["land_use/taz_data"] = df

In [5]:
df = pd.read_csv(os.path.join(SRCDIR, "skims", "accessibility.csv"), index_col="taz")
df.columns = [col_map.get(s, s) for s in df.columns]
store["skims/accessibility"] = df

In [6]:
df = pd.read_csv(os.path.join(SRCDIR, "popsyn", "hhFile.p2011s3a1.2010.csv"), index_col="HHID")
df.columns = [col_map.get(s, s) for s in df.columns]
store["households"] = df

In [7]:
df = pd.read_csv(os.path.join(SRCDIR, "popsyn", "personFile.p2011s3a1.2010.csv"), index_col="PERID")
df.columns = [col_map.get(s, s) for s in df.columns]
store["persons"] = df

In [8]:
store.close()

In [8]: