RF00004
Saved model in RF00004.model
Classifier:
SGDClassifier(alpha=0.0001, class_weight='auto', epsilon=0.1, eta0=0.0001,
fit_intercept=True, l1_ratio=0.10158070470654268,
learning_rate='constant', loss='squared_hinge', n_iter=87, n_jobs=1,
penalty='l2', power_t=0.48091437952204807, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.856 +- 0.087
precision: 0.738 +- 0.120
recall: 0.917 +- 0.129
f1: 0.812 +- 0.109
average_precision: 0.967 +- 0.046
roc_auc: 0.978 +- 0.031
--------------------------------------------------------------------------------
RF00015
Saved model in RF00015.model
Classifier:
SGDClassifier(alpha=0.01, class_weight='auto', epsilon=0.1, eta0=0.001,
fit_intercept=True, l1_ratio=0.64640302916124981,
learning_rate='invscaling', loss='log', n_iter=23, n_jobs=1,
penalty='l2', power_t=0.91995260126272083, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.638 +- 0.258
precision: 0.269 +- 0.389
recall: 0.600 +- 0.490
f1: 0.225 +- 0.278
average_precision: 0.918 +- 0.043
roc_auc: 0.957 +- 0.041
--------------------------------------------------------------------------------
RF00020
Saved model in RF00020.model
Classifier:
SGDClassifier(alpha=0.01, class_weight='auto', epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.63227765595103635,
learning_rate='invscaling', loss='squared_hinge', n_iter=36,
n_jobs=1, penalty='l2', power_t=0.43674388179763302,
random_state=None, shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.964 +- 0.023
precision: 0.922 +- 0.069
recall: 0.982 +- 0.036
f1: 0.948 +- 0.031
average_precision: 0.998 +- 0.003
roc_auc: 0.999 +- 0.002
--------------------------------------------------------------------------------
RF00026
Saved model in RF00026.model
Classifier:
SGDClassifier(alpha=0.01, class_weight='auto', epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.13475884399289795,
learning_rate='constant', loss='perceptron', n_iter=39, n_jobs=1,
penalty='l2', power_t=0.20114541710393255, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.927 +- 0.091
precision: 0.967 +- 0.067
recall: 0.782 +- 0.273
f1: 0.903 +- 0.107
average_precision: 0.996 +- 0.006
roc_auc: 0.998 +- 0.003
--------------------------------------------------------------------------------
RF00169
Saved model in RF00169.model
Classifier:
SGDClassifier(alpha=0.0001, class_weight='auto', epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.54444744563017045,
learning_rate='constant', loss='perceptron', n_iter=69, n_jobs=1,
penalty='elasticnet', power_t=0.74764244335882957,
random_state=None, shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.872 +- 0.054
precision: 0.906 +- 0.052
recall: 0.717 +- 0.155
f1: 0.776 +- 0.088
average_precision: 0.883 +- 0.086
roc_auc: 0.918 +- 0.048
--------------------------------------------------------------------------------
RF00380
Saved model in RF00380.model
Classifier:
SGDClassifier(alpha=0.1, class_weight='auto', epsilon=0.1, eta0=0.0001,
fit_intercept=True, l1_ratio=0.64265903304770333,
learning_rate='optimal', loss='perceptron', n_iter=43, n_jobs=1,
penalty='l2', power_t=0.98982760378145185, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.951 +- 0.042
precision: 1.000 +- 0.000
recall: 0.873 +- 0.155
f1: 0.942 +- 0.056
average_precision: 0.998 +- 0.005
roc_auc: 1.000 +- 0.000
--------------------------------------------------------------------------------
RF00386
Saved model in RF00386.model
Classifier:
SGDClassifier(alpha=1e-05, class_weight='auto', epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.37602958317424173,
learning_rate='constant', loss='perceptron', n_iter=52, n_jobs=1,
penalty='l2', power_t=0.18949858556654495, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.993 +- 0.014
precision: 1.000 +- 0.000
recall: 0.978 +- 0.044
f1: 0.978 +- 0.027
average_precision: 1.000 +- 0.000
roc_auc: 0.999 +- 0.002
--------------------------------------------------------------------------------
RF01051
Saved model in RF01051.model
Classifier:
SGDClassifier(alpha=0.01, class_weight='auto', epsilon=0.1, eta0=0.0001,
fit_intercept=True, l1_ratio=0.80173625561833473,
learning_rate='optimal', loss='modified_huber', n_iter=8, n_jobs=1,
penalty='l2', power_t=0.23465038101144742, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.971 +- 0.043
precision: 1.000 +- 0.000
recall: 0.933 +- 0.089
f1: 0.886 +- 0.143
average_precision: 1.000 +- 0.000
roc_auc: 1.000 +- 0.000
--------------------------------------------------------------------------------
RF01055
Saved model in RF01055.model
Classifier:
SGDClassifier(alpha=0.0001, class_weight='auto', epsilon=0.1, eta0=0.0001,
fit_intercept=True, l1_ratio=0.64391470405668427,
learning_rate='optimal', loss='perceptron', n_iter=9, n_jobs=1,
penalty='elasticnet', power_t=0.33670895830666792,
random_state=None, shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.958 +- 0.053
precision: 0.982 +- 0.036
recall: 0.918 +- 0.076
f1: 0.915 +- 0.053
average_precision: 1.000 +- 0.000
roc_auc: 0.992 +- 0.006
--------------------------------------------------------------------------------
RF01234
Saved model in RF01234.model
Classifier:
SGDClassifier(alpha=0.001, class_weight='auto', epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.64261133610654331,
learning_rate='invscaling', loss='perceptron', n_iter=14, n_jobs=1,
penalty='l2', power_t=0.16616271616774891, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 1.000 +- 0.000
precision: 1.000 +- 0.000
recall: 1.000 +- 0.000
f1: 1.000 +- 0.000
average_precision: 1.000 +- 0.000
roc_auc: 1.000 +- 0.000
--------------------------------------------------------------------------------
RF01699
Saved model in RF01699.model
Classifier:
SGDClassifier(alpha=1e-07, class_weight='auto', epsilon=0.1, eta0=0.0001,
fit_intercept=True, l1_ratio=0.45235173381275839,
learning_rate='constant', loss='log', n_iter=50, n_jobs=1,
penalty='elasticnet', power_t=0.49561474770449854,
random_state=None, shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.779 +- 0.117
precision: 0.629 +- 0.111
recall: 0.983 +- 0.033
f1: 0.760 +- 0.089
average_precision: 0.994 +- 0.011
roc_auc: 0.996 +- 0.009
--------------------------------------------------------------------------------
RF01701
Saved model in RF01701.model
Classifier:
SGDClassifier(alpha=1e-08, class_weight='auto', epsilon=0.1, eta0=0.001,
fit_intercept=True, l1_ratio=0.55998861689157009,
learning_rate='invscaling', loss='perceptron', n_iter=99, n_jobs=1,
penalty='l1', power_t=0.30156293415887159, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.944 +- 0.043
precision: 0.969 +- 0.062
recall: 0.900 +- 0.097
f1: 0.929 +- 0.041
average_precision: 0.992 +- 0.011
roc_auc: 0.993 +- 0.009
--------------------------------------------------------------------------------
RF01705
Saved model in RF01705.model
Classifier:
SGDClassifier(alpha=0.0001, class_weight='auto', epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.65407415607929464,
learning_rate='constant', loss='modified_huber', n_iter=69,
n_jobs=1, penalty='l2', power_t=0.28178398019804851,
random_state=None, shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.989 +- 0.014
precision: 1.000 +- 0.000
recall: 0.967 +- 0.041
f1: 0.983 +- 0.021
average_precision: 0.999 +- 0.003
roc_auc: 0.999 +- 0.001
--------------------------------------------------------------------------------
RF01731
Saved model in RF01731.model
Classifier:
SGDClassifier(alpha=0.001, class_weight='auto', epsilon=0.1, eta0=0.001,
fit_intercept=True, l1_ratio=0.77395618830631885,
learning_rate='constant', loss='squared_hinge', n_iter=97, n_jobs=1,
penalty='elasticnet', power_t=0.24447368124995239,
random_state=None, shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.956 +- 0.065
precision: 0.983 +- 0.033
recall: 0.883 +- 0.194
f1: 0.917 +- 0.129
average_precision: 0.997 +- 0.006
roc_auc: 0.999 +- 0.003
--------------------------------------------------------------------------------
RF01734
Saved model in RF01734.model
Classifier:
SGDClassifier(alpha=0.001, class_weight='auto', epsilon=0.1, eta0=0.001,
fit_intercept=True, l1_ratio=0.35770528087577169,
learning_rate='invscaling', loss='squared_hinge', n_iter=91,
n_jobs=1, penalty='l2', power_t=0.26619060893857599,
random_state=None, shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.722 +- 0.056
precision: 0.560 +- 0.064
recall: 0.933 +- 0.062
f1: 0.688 +- 0.040
average_precision: 0.855 +- 0.074
roc_auc: 0.901 +- 0.064
--------------------------------------------------------------------------------
RF01745
Saved model in RF01745.model
Classifier:
SGDClassifier(alpha=0.0001, class_weight='auto', epsilon=0.1, eta0=0.0001,
fit_intercept=True, l1_ratio=0.37211447829516431,
learning_rate='constant', loss='squared_hinge', n_iter=90, n_jobs=1,
penalty='l2', power_t=0.68342934202312244, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.953 +- 0.023
precision: 1.000 +- 0.000
recall: 0.861 +- 0.066
f1: 0.924 +- 0.039
average_precision: 0.967 +- 0.035
roc_auc: 0.974 +- 0.028
--------------------------------------------------------------------------------
RF01750
Saved model in RF01750.model
Classifier:
SGDClassifier(alpha=1e-08, class_weight='auto', epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.12942585708270446,
learning_rate='invscaling', loss='perceptron', n_iter=24, n_jobs=1,
penalty='l2', power_t=0.26601266866057927, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.909 +- 0.047
precision: 1.000 +- 0.000
recall: 0.818 +- 0.057
f1: 0.918 +- 0.053
average_precision: 0.965 +- 0.032
roc_auc: 0.974 +- 0.021
--------------------------------------------------------------------------------
RF01942
Saved model in RF01942.model
Classifier:
SGDClassifier(alpha=0.1, class_weight='auto', epsilon=0.1, eta0=0.001,
fit_intercept=True, l1_ratio=0.82324455289727794,
learning_rate='constant', loss='log', n_iter=12, n_jobs=1,
penalty='l2', power_t=0.23732531046483163, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.815 +- 0.073
precision: 0.659 +- 0.101
recall: 1.000 +- 0.000
f1: 0.790 +- 0.071
average_precision: 1.000 +- 0.000
roc_auc: 1.000 +- 0.000
--------------------------------------------------------------------------------
RF01998
Saved model in RF01998.model
Classifier:
SGDClassifier(alpha=1e-05, class_weight='auto', epsilon=0.1, eta0=0.001,
fit_intercept=True, l1_ratio=0.65980206038345846,
learning_rate='constant', loss='squared_hinge', n_iter=98, n_jobs=1,
penalty='elasticnet', power_t=0.91790557640332981,
random_state=None, shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.944 +- 0.039
precision: 0.950 +- 0.067
recall: 0.883 +- 0.085
f1: 0.913 +- 0.062
average_precision: 0.962 +- 0.032
roc_auc: 0.974 +- 0.024
--------------------------------------------------------------------------------
RF02005
Saved model in RF02005.model
Classifier:
SGDClassifier(alpha=1e-05, class_weight='auto', epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.33523353554900681,
learning_rate='constant', loss='squared_hinge', n_iter=64, n_jobs=1,
penalty='l1', power_t=0.39476574010678822, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.861 +- 0.053
precision: 0.783 +- 0.128
recall: 0.851 +- 0.094
f1: 0.814 +- 0.068
average_precision: 0.910 +- 0.065
roc_auc: 0.936 +- 0.055
--------------------------------------------------------------------------------
RF02012
Saved model in RF02012.model
Classifier:
SGDClassifier(alpha=0.0001, class_weight='auto', epsilon=0.1, eta0=0.0001,
fit_intercept=True, l1_ratio=0.73412284676305983,
learning_rate='constant', loss='squared_hinge', n_iter=69, n_jobs=1,
penalty='l2', power_t=0.73243001023244714, random_state=None,
shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.694 +- 0.077
precision: 0.522 +- 0.058
recall: 0.933 +- 0.062
f1: 0.672 +- 0.060
average_precision: 0.944 +- 0.034
roc_auc: 0.948 +- 0.039
--------------------------------------------------------------------------------
RF02034
Saved model in RF02034.model
Classifier:
SGDClassifier(alpha=0.0001, class_weight='auto', epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.73947453315103839,
learning_rate='constant', loss='modified_huber', n_iter=77,
n_jobs=1, penalty='l2', power_t=0.57060176400075679,
random_state=None, shuffle=True, verbose=0, warm_start=False)
--------------------------------------------------------------------------------
Predictive performance:
accuracy: 0.994 +- 0.011
precision: 1.000 +- 0.000
recall: 0.983 +- 0.033
f1: 0.991 +- 0.017
average_precision: 1.000 +- 0.000
roc_auc: 1.000 +- 0.000
--------------------------------------------------------------------------------
CPU times: user 2h 57min 31s, sys: 23min 42s, total: 3h 21min 14s
Wall time: 5h 16min 1s