**Minimize options**
*BFGS* options:
gtol : float
Gradient norm must be less than `gtol` before successful
termination.
norm : float
Order of norm (Inf is max, -Inf is min).
eps : float or ndarray
If `jac` is approximated, use this value for the step size.
*Nelder-Mead* options:
xtol : float
Relative error in solution `xopt` acceptable for convergence.
ftol : float
Relative error in ``fun(xopt)`` acceptable for convergence.
maxfev : int
Maximum number of function evaluations to make.
*Newton-CG* options:
xtol : float
Average relative error in solution `xopt` acceptable for
convergence.
eps : float or ndarray
If `jac` is approximated, use this value for the step size.
*CG* options:
gtol : float
Gradient norm must be less than `gtol` before successful
termination.
norm : float
Order of norm (Inf is max, -Inf is min).
eps : float or ndarray
If `jac` is approximated, use this value for the step size.
*Powell* options:
xtol : float
Relative error in solution `xopt` acceptable for convergence.
ftol : float
Relative error in ``fun(xopt)`` acceptable for convergence.
maxfev : int
Maximum number of function evaluations to make.
direc : ndarray
Initial set of direction vectors for the Powell method.
*Anneal* options:
ftol : float
Relative error in ``fun(x)`` acceptable for convergence.
schedule : str
Annealing schedule to use. One of: 'fast', 'cauchy' or
'boltzmann'.
T0 : float
Initial Temperature (estimated as 1.2 times the largest
cost-function deviation over random points in the range).
Tf : float
Final goal temperature.
maxfev : int
Maximum number of function evaluations to make.
maxaccept : int
Maximum changes to accept.
boltzmann : float
Boltzmann constant in acceptance test (increase for less
stringent test at each temperature).
learn_rate : float
Scale constant for adjusting guesses.
quench, m, n : float
Parameters to alter fast_sa schedule.
lower, upper : float or ndarray
Lower and upper bounds on `x`.
dwell : int
The number of times to search the space at each temperature.
*L-BFGS-B* options:
ftol : float
The iteration stops when ``(f^k -
f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol``.
gtol : float
The iteration will stop when ``max{|proj g_i | i = 1, ..., n}
<= gtol`` where ``pg_i`` is the i-th component of the
projected gradient.
maxcor : int
The maximum number of variable metric corrections used to
define the limited memory matrix. (The limited memory BFGS
method does not store the full hessian but uses this many terms
in an approximation to it.)
maxiter : int
Maximum number of function evaluations.
*TNC* options:
ftol : float
Precision goal for the value of f in the stoping criterion.
If ftol < 0.0, ftol is set to 0.0 defaults to -1.
xtol : float
Precision goal for the value of x in the stopping
criterion (after applying x scaling factors). If xtol <
0.0, xtol is set to sqrt(machine_precision). Defaults to
-1.
gtol : float
Precision goal for the value of the projected gradient in
the stopping criterion (after applying x scaling factors).
If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy).
Setting it to 0.0 is not recommended. Defaults to -1.
scale : list of floats
Scaling factors to apply to each variable. If None, the
factors are up-low for interval bounded variables and
1+|x] fo the others. Defaults to None
offset : float
Value to subtract from each variable. If None, the
offsets are (up+low)/2 for interval bounded variables
and x for the others.
maxCGit : int
Maximum number of hessian*vector evaluations per main
iteration. If maxCGit == 0, the direction chosen is
-gradient if maxCGit < 0, maxCGit is set to
max(1,min(50,n/2)). Defaults to -1.
maxiter : int
Maximum number of function evaluation. if None, `maxiter` is
set to max(100, 10*len(x0)). Defaults to None.
eta : float
Severity of the line search. if < 0 or > 1, set to 0.25.
Defaults to -1.
stepmx : float
Maximum step for the line search. May be increased during
call. If too small, it will be set to 10.0. Defaults to 0.
accuracy : float
Relative precision for finite difference calculations. If
<= machine_precision, set to sqrt(machine_precision).
Defaults to 0.
minfev : float
Minimum function value estimate. Defaults to 0.
rescale : float
Scaling factor (in log10) used to trigger f value
rescaling. If 0, rescale at each iteration. If a large
value, never rescale. If < 0, rescale is set to 1.3.
*COBYLA* options:
tol : float
Final accuracy in the optimization (not precisely guaranteed).
This is a lower bound on the size of the trust region.
rhobeg : float
Reasonable initial changes to the variables.
maxfev : int
Maximum number of function evaluations.
catol : float
Absolute tolerance for constraint violations (default: 1e-6).
*SLSQP* options:
ftol : float
Precision goal for the value of f in the stopping criterion.
eps : float
Step size used for numerical approximation of the jacobian.
maxiter : int
Maximum number of iterations.
*dogleg* options:
initial_trust_radius : float
Initial trust-region radius.
max_trust_radius : float
Maximum value of the trust-region radius. No steps that are longer
than this value will be proposed.
eta : float
Trust region related acceptance stringency for proposed steps.
gtol : float
Gradient norm must be less than `gtol` before successful
termination.
*trust-ncg* options:
See dogleg options.