In [1]:
import targets as targets
import classification as classif
import stage as stage
import rules as rules
import comms as comms
import processor as processor
import datetime
In [2]:
ts = targets.TargetSpace()
In [3]:
bc = classif.BackgroundClassifier()
rnc = classif.RadiusNeighborsClassifier(classif.classification_weights, ts, outliers=bc)
In [4]:
send_triggers = rules.SendTriggers()
In [5]:
classification_processor = processor.ClassificationProcessor(rnc, ts, send_triggers, True)
In [6]:
stage_instance = stage.Stage(classification_processor, ts, send_triggers)
In [7]:
comms_instance = comms.InstrumentComms(stage_instance, True)
In [8]:
#For testing, uncomment 'while True' in stage.Stage.processEligibleStagedData()
#stage_instance.processEligibleStagedData()
In [9]:
#For testing
#stage_instance.recent_targets
In [16]:
stage_instance.processEligibleStagedData()
Exception in thread Thread-3:
Traceback (most recent call last):
File "/Users/bernease/anaconda/envs/py3.5/lib/python3.5/threading.py", line 914, in _bootstrap_inner
self.run()
File "/Users/bernease/anaconda/envs/py3.5/lib/python3.5/threading.py", line 862, in run
self._target(*self._args, **self._kwargs)
File "/Users/bernease/Projects/iAMP/iAMP-Novelty-Detection/shablona/processor.py", line 43, in threadFunctions
self.fitClassificationsAndTriggerRules()
File "/Users/bernease/Projects/iAMP/iAMP-Novelty-Detection/shablona/processor.py", line 89, in fitClassificationsAndTriggerRules
X = np.array(target.get_classifier_features()).reshape(1, -1)
File "/Users/bernease/Projects/iAMP/iAMP-Novelty-Detection/shablona/targets.py", line 76, in get_classifier_features
adcp_entry['speed']] # current
TypeError: 'NoneType' object is not subscriptable
In [17]:
stage_instance.data_queues
Out[17]:
{'adcp': 0,
'camera': [],
'nims': {371: [65,
70,
75,
80,
85,
90,
95,
100,
105,
110,
115,
120,
125,
130,
135,
140,
145,
150,
155,
160,
165,
170,
175,
180,
185,
190,
195,
200,
205,
210,
215,
220,
225,
230,
235,
240,
245,
250,
255,
260,
265,
270,
275,
280,
285,
290,
295,
300,
305,
310,
315,
320,
325,
330,
334,
338,
342,
346,
350,
354,
359,
364,
369,
374,
379,
384,
389,
394,
399,
404,
409,
414,
419,
424,
429,
434,
439,
444,
449,
454,
459,
464,
469,
474,
479,
484,
489,
494,
499,
504,
509,
514,
519,
524,
529,
534,
539,
544,
549,
554,
559,
564,
569,
574,
579,
584,
589,
594,
599,
604,
609,
614,
619,
624,
629,
634,
639,
644,
649,
654,
659,
664,
669,
674,
679,
684,
689,
694,
699,
704,
709,
714,
719,
724,
729,
734,
739,
744,
749,
754,
759,
764,
769,
774,
779,
784,
789,
794,
799,
804,
809,
814,
819,
824,
829,
834,
839,
844,
849,
854,
859,
864,
869,
874,
879,
884,
889,
894,
899,
904,
909,
914,
919,
924,
929,
934,
939,
944,
949,
954,
959,
964,
969,
974,
979,
984,
989,
994,
999,
1004,
1009,
1014,
1019,
1024,
1029,
1034,
1039,
1044,
1049,
1054,
1059,
1064,
1069,
1074,
1079,
1084,
1089,
1094,
1099,
1104,
1109,
1114,
1119,
1124,
1129,
1134,
1139,
1144,
1149,
1154,
1159,
1164],
380: [66,
71,
76,
81,
86,
91,
96,
101,
106,
111,
116,
121,
126,
131,
136,
141,
146,
151,
156,
161,
166,
171,
176,
181,
186,
191,
196,
201,
206,
211,
216,
221,
226,
231,
236,
241,
246,
251,
256,
261,
266,
271,
276,
281,
286,
291,
296,
301,
306,
311,
316,
321,
326,
331,
335,
339,
343,
347,
351,
355,
360,
365,
370,
375,
380,
385,
390,
395,
400,
405,
410,
415,
420,
425,
430,
435,
440,
445,
450,
455,
460,
465,
470,
475,
480,
485,
490,
495,
500,
505,
510,
515,
520,
525,
530,
535,
540,
545,
550,
555,
560,
565,
570,
575,
580,
585,
590,
595,
600,
605,
610,
615,
620,
625,
630,
635,
640,
645,
650,
655,
660,
665,
670,
675,
680,
685,
690,
695,
700,
705,
710,
715,
720,
725,
730,
735,
740,
745,
750,
755,
760,
765,
770,
775,
780,
785,
790,
795,
800,
805,
810,
815,
820,
825,
830,
835,
840,
845,
850,
855,
860,
865,
870,
875,
880,
885,
890,
895,
900,
905,
910,
915,
920,
925,
930,
935,
940,
945,
950,
955,
960,
965,
970,
975,
980,
985,
990,
995,
1000,
1005,
1010,
1015,
1020,
1025,
1030,
1035,
1040,
1045,
1050,
1055,
1060,
1065,
1070,
1075,
1080,
1085,
1090,
1095,
1100,
1105,
1110,
1115,
1120,
1125,
1130,
1135,
1140,
1145,
1150,
1155,
1160,
1165],
382: [67,
72,
77,
82,
87,
92,
97,
102,
107,
112,
117,
122,
127,
132,
137,
142,
147,
152,
157,
162,
167,
172,
177,
182,
187,
192,
197,
202,
207,
212,
217,
222,
227,
232,
237,
242,
247,
252,
257,
262,
267,
272,
277,
282,
287,
292,
297,
302,
307,
312,
317,
322,
327],
384: [68,
73,
78,
83,
88,
93,
98,
103,
108,
113,
118,
123,
128,
133,
138,
143,
148,
153,
158,
163,
168,
173,
178,
183,
188,
193,
198,
203,
208,
213,
218,
223,
228,
233,
238,
243,
248,
253,
258,
263,
268,
273,
278,
283,
288,
293,
298,
303,
308,
313,
318,
323,
328,
332,
336,
340,
344,
348,
352,
356,
361,
366,
371,
376,
381,
386,
391,
396,
401,
406,
411,
416,
421,
426,
431,
436,
441,
446,
451,
456,
461,
466,
471,
476,
481,
486,
491,
496,
501,
506,
511,
516,
521,
526,
531,
536,
541,
546,
551,
556,
561,
566,
571,
576,
581,
586,
591,
596,
601,
606,
611,
616,
621,
626,
631,
636,
641,
646,
651,
656,
661,
666,
671,
676,
681,
686,
691,
696,
701,
706,
711,
716,
721,
726,
731,
736,
741,
746,
751,
756,
761,
766,
771,
776,
781,
786,
791,
796,
801,
806,
811,
816,
821,
826,
831,
836,
841,
846,
851,
856,
861,
866,
871,
876,
881,
886,
891,
896,
901,
906,
911,
916,
921,
926,
931,
936,
941,
946,
951,
956,
961,
966,
971,
976,
981,
986,
991,
996,
1001,
1006,
1011,
1016,
1021,
1026,
1031,
1036,
1041,
1046,
1051,
1056,
1061,
1066,
1071,
1076,
1081,
1086,
1091,
1096,
1101,
1106,
1111,
1116,
1121,
1126,
1131,
1136,
1141,
1146,
1151,
1156,
1161,
1166],
390: [69,
74,
79,
84,
89,
94,
99,
104,
109,
114,
119,
124,
129,
134,
139,
144,
149,
154,
159,
164,
169,
174,
179,
184,
189,
194,
199,
204,
209,
214,
219,
224,
229,
234,
239,
244,
249,
254,
259,
264,
269,
274,
279,
284,
289,
294,
299,
304,
309,
314,
319,
324,
329,
333,
337,
341,
345,
349,
353,
357,
362,
367,
372,
377,
382,
387,
392,
397,
402,
407,
412,
417,
422,
427,
432,
437,
442,
447,
452,
457,
462,
467,
472,
477,
482,
487,
492,
497,
502,
507,
512,
517,
522,
527,
532,
537,
542,
547,
552,
557,
562,
567,
572,
577,
582,
587,
592,
597,
602,
607,
612,
617,
622,
627,
632,
637,
642,
647,
652,
657,
662,
667,
672,
677,
682,
687,
692,
697,
702,
707,
712,
717,
722,
727,
732,
737,
742,
747,
752,
757,
762,
767,
772,
777,
782,
787,
792,
797,
802,
807,
812,
817,
822,
827,
832,
837,
842,
847,
852,
857,
862,
867,
872,
877,
882,
887,
892,
897,
902,
907,
912,
917,
922,
927,
932,
937,
942,
947,
952,
957,
962,
967,
972,
977,
982,
987,
992,
997,
1002,
1007,
1012,
1017,
1022,
1027,
1032,
1037,
1042,
1047,
1052,
1057,
1062,
1067,
1072,
1077,
1082,
1087,
1092,
1097,
1102,
1107,
1112,
1117,
1122,
1127,
1132,
1137,
1142,
1147,
1152,
1157,
1162,
1167],
391: [358,
363,
368,
373,
378,
383,
388,
393,
398,
403,
408,
413,
418,
423,
428,
433,
438,
443,
448,
453,
458,
463,
468,
473,
478,
483,
488,
493,
498,
503,
508,
513,
518,
523,
528,
533,
538,
543,
548,
553,
558,
563,
568,
573,
578,
583,
588,
593,
598,
603,
608,
613,
618,
623,
628,
633,
638,
643,
648,
653,
658,
663,
668,
673,
678,
683,
688,
693,
698,
703,
708,
713,
718,
723,
728,
733,
738,
743,
748,
753,
758,
763,
768,
773,
778,
783,
788,
793,
798,
803,
808,
813,
818,
823,
828,
833,
838,
843,
848,
853,
858,
863,
868,
873,
878,
883,
888,
893,
898,
903,
908,
913,
918,
923,
928,
933,
938,
943,
948,
953,
958,
963,
968,
973,
978,
983,
988,
993,
998,
1003,
1008,
1013,
1018,
1023,
1028,
1033,
1038,
1043,
1048,
1053,
1058,
1063,
1068,
1073,
1078,
1083,
1088,
1093,
1098,
1103,
1108,
1113,
1118,
1123,
1128,
1133,
1138,
1143,
1148,
1153,
1158,
1163,
1168]},
'pamguard': []}
In [12]:
len(ts.classifier_index_to_target)
Out[12]:
8
In [ ]:
Content source: bernease/iAMP-Novelty-Detection
Similar notebooks: