In [3]:
import pandas as pd
In [52]:
inp_df = pd.DataFrame.from_csv('data/poll/raw_polls_cut.csv')
In [62]:
states = {
'AK': 'Alaska',
'AL': 'Alabama',
'AR': 'Arkansas',
'AZ': 'Arizona',
'CA': 'California',
'CO': 'Colorado',
'CT': 'Connecticut',
'DC': 'District of Columbia',
'DE': 'Delaware',
'FL': 'Florida',
'GA': 'Georgia',
'HI': 'Hawaii',
'IA': 'Iowa',
'ID': 'Idaho',
'IL': 'Illinois',
'IN': 'Indiana',
'KS': 'Kansas',
'KY': 'Kentucky',
'LA': 'Louisiana',
'MA': 'Massachusetts',
'MD': 'Maryland',
'ME': 'Maine',
'MI': 'Michigan',
'MN': 'Minnesota',
'MO': 'Missouri',
'MS': 'Mississippi',
'MT': 'Montana',
'NC': 'North Carolina',
'ND': 'North Dakota',
'NE': 'Nebraska',
'NH': 'New Hampshire',
'NJ': 'New Jersey',
'NM': 'New Mexico',
'NV': 'Nevada',
'NY': 'New York',
'OH': 'Ohio',
'OK': 'Oklahoma',
'OR': 'Oregon',
'PA': 'Pennsylvania',
'RI': 'Rhode Island',
'SC': 'South Carolina',
'SD': 'South Dakota',
'TN': 'Tennessee',
'TX': 'Texas',
'UT': 'Utah',
'VA': 'Virginia',
'VT': 'Vermont',
'WA': 'Washington',
'WI': 'Wisconsin',
'WV': 'West Virginia',
'WY': 'Wyoming'
}
parties = {
'Clinton': 'Democrat',
'Sanders': 'Democrat',
'Rubio': 'Republican',
'Cruz': 'Republican',
'Trump': 'Republican',
}
In [86]:
res_df = pd.DataFrame(columns=['State','Party','Candidate','min','25th','median', '75th', 'max','mean', 'avg_size'])
i = 0
for state in states.keys():
for cand in ['Clinton', 'Sanders', 'Rubio', 'Cruz', 'Trump']:
c1_newd = inp_df[:][(inp_df['location'] == state) & (inp_df['cand1_name'] == cand)]
c2_newd = inp_df[:][(inp_df['location'] == state) & (inp_df['cand2_name'] == cand)]
res_df.set_value(i, 'State', states[state])
res_df.set_value(i, 'Party', parties[cand])
res_df.set_value(i, 'Candidate', cand)
if len(c1_newd.index) > 0:
res_df.set_value(i, 'min', c1_newd.cand1_pct.min())
res_df.set_value(i, '25th', c1_newd.cand1_pct.quantile(0.25))
res_df.set_value(i, 'median', c1_newd.cand1_pct.quantile(0.5))
res_df.set_value(i, '75th', c1_newd.cand1_pct.quantile(0.75))
res_df.set_value(i, 'max', c1_newd.cand1_pct.max())
res_df.set_value(i, 'mean', c1_newd.cand1_pct.mean())
res_df.set_value(i, 'avg_size', c1_newd.samplesize.mean())
elif len(c2_newd.index) > 0:
res_df.set_value(i, 'min', c2_newd.cand2_pct.min())
res_df.set_value(i, '25th', c2_newd.cand2_pct.quantile(0.25))
res_df.set_value(i, 'median', c2_newd.cand2_pct.quantile(0.5))
res_df.set_value(i, '75th', c2_newd.cand2_pct.quantile(0.75))
res_df.set_value(i, 'max', c2_newd.cand2_pct.max())
res_df.set_value(i, 'mean', c2_newd.cand2_pct.mean())
res_df.set_value(i, 'avg_size', c2_newd.samplesize.mean())
else:
res_df.set_value(i, 'min', 0)
res_df.set_value(i, '25th', 0)
res_df.set_value(i, 'median', 0)
res_df.set_value(i, '75th', 0)
res_df.set_value(i, 'max', 0)
res_df.set_value(i, 'mean', 0)
res_df.set_value(i, 'avg_size', 0)
i += 1
In [94]:
res_df = res_df.sort_values(by='State')
res_df.to_csv('data/poll/polls_aggregated.csv')