Fitting 5 folds for each of 20 candidates, totalling 100 fits
[CV] C=1.0, gamma=0.01 ...............................................
[CV] ................ C=1.0, gamma=0.01, score=0.008107, total= 6.3s
[CV] C=1.0, gamma=0.01 ...............................................
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 9.9s remaining: 0.0s
[CV] ............... C=1.0, gamma=0.01, score=-0.060541, total= 5.9s
[CV] C=1.0, gamma=0.01 ...............................................
[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 19.4s remaining: 0.0s
[CV] ............... C=1.0, gamma=0.01, score=-0.063337, total= 6.1s
[CV] C=1.0, gamma=0.01 ...............................................
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 29.2s remaining: 0.0s
[CV] ................ C=1.0, gamma=0.01, score=0.020375, total= 6.6s
[CV] C=1.0, gamma=0.01 ...............................................
[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 39.7s remaining: 0.0s
[CV] ............... C=1.0, gamma=0.01, score=-0.039439, total= 6.2s
[CV] C=1.0, gamma=0.1 ................................................
[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 49.8s remaining: 0.0s
[CV] ................. C=1.0, gamma=0.1, score=0.030829, total= 6.2s
[CV] C=1.0, gamma=0.1 ................................................
[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 59.8s remaining: 0.0s
[CV] ................ C=1.0, gamma=0.1, score=-0.070639, total= 5.9s
[CV] C=1.0, gamma=0.1 ................................................
[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 1.2min remaining: 0.0s
[CV] ................ C=1.0, gamma=0.1, score=-0.030182, total= 6.7s
[CV] C=1.0, gamma=0.1 ................................................
[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 1.3min remaining: 0.0s
[CV] ................. C=1.0, gamma=0.1, score=0.047875, total= 6.5s
[CV] C=1.0, gamma=0.1 ................................................
[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 1.5min remaining: 0.0s
[CV] ................ C=1.0, gamma=0.1, score=-0.015380, total= 6.9s
[CV] C=1.0, gamma=1.0 ................................................
[CV] ................. C=1.0, gamma=1.0, score=0.089868, total= 6.6s
[CV] C=1.0, gamma=1.0 ................................................
[CV] ................ C=1.0, gamma=1.0, score=-0.108724, total= 6.3s
[CV] C=1.0, gamma=1.0 ................................................
[CV] ................. C=1.0, gamma=1.0, score=0.008967, total= 6.5s
[CV] C=1.0, gamma=1.0 ................................................
[CV] ................. C=1.0, gamma=1.0, score=0.055787, total= 6.4s
[CV] C=1.0, gamma=1.0 ................................................
[CV] ................. C=1.0, gamma=1.0, score=0.018609, total= 6.2s
[CV] C=1.0, gamma=10.0 ...............................................
[CV] ................ C=1.0, gamma=10.0, score=0.160835, total= 5.9s
[CV] C=1.0, gamma=10.0 ...............................................
[CV] ............... C=1.0, gamma=10.0, score=-0.144667, total= 6.1s
[CV] C=1.0, gamma=10.0 ...............................................
[CV] ................ C=1.0, gamma=10.0, score=0.050787, total= 6.4s
[CV] C=1.0, gamma=10.0 ...............................................
[CV] ................ C=1.0, gamma=10.0, score=0.111105, total= 6.0s
[CV] C=1.0, gamma=10.0 ...............................................
[CV] ................ C=1.0, gamma=10.0, score=0.061344, total= 6.1s
[CV] C=1.0, gamma=100.0 ..............................................
[CV] ............... C=1.0, gamma=100.0, score=0.218014, total= 7.1s
[CV] C=1.0, gamma=100.0 ..............................................
[CV] .............. C=1.0, gamma=100.0, score=-0.139532, total= 6.5s
[CV] C=1.0, gamma=100.0 ..............................................
[CV] ............... C=1.0, gamma=100.0, score=0.065283, total= 6.7s
[CV] C=1.0, gamma=100.0 ..............................................
[CV] ............... C=1.0, gamma=100.0, score=0.174743, total= 7.6s
[CV] C=1.0, gamma=100.0 ..............................................
[CV] ............... C=1.0, gamma=100.0, score=0.116135, total= 7.3s
[CV] C=10.0, gamma=0.01 ..............................................
[CV] ............... C=10.0, gamma=0.01, score=0.027515, total= 6.7s
[CV] C=10.0, gamma=0.01 ..............................................
[CV] .............. C=10.0, gamma=0.01, score=-0.064427, total= 6.1s
[CV] C=10.0, gamma=0.01 ..............................................
[CV] .............. C=10.0, gamma=0.01, score=-0.044469, total= 6.8s
[CV] C=10.0, gamma=0.01 ..............................................
[CV] ............... C=10.0, gamma=0.01, score=0.031419, total= 6.5s
[CV] C=10.0, gamma=0.01 ..............................................
[CV] .............. C=10.0, gamma=0.01, score=-0.023918, total= 6.6s
[CV] C=10.0, gamma=0.1 ...............................................
[CV] ................ C=10.0, gamma=0.1, score=0.060138, total= 6.7s
[CV] C=10.0, gamma=0.1 ...............................................
[CV] ............... C=10.0, gamma=0.1, score=-0.092700, total= 5.8s
[CV] C=10.0, gamma=0.1 ...............................................
[CV] ............... C=10.0, gamma=0.1, score=-0.003730, total= 6.5s
[CV] C=10.0, gamma=0.1 ...............................................
[CV] ................ C=10.0, gamma=0.1, score=0.014720, total= 6.4s
[CV] C=10.0, gamma=0.1 ...............................................
[CV] ................ C=10.0, gamma=0.1, score=0.010790, total= 6.5s
[CV] C=10.0, gamma=1.0 ...............................................
[CV] ................ C=10.0, gamma=1.0, score=0.147792, total= 6.6s
[CV] C=10.0, gamma=1.0 ...............................................
[CV] ............... C=10.0, gamma=1.0, score=-0.138138, total= 6.0s
[CV] C=10.0, gamma=1.0 ...............................................
[CV] ................ C=10.0, gamma=1.0, score=0.046594, total= 6.6s
[CV] C=10.0, gamma=1.0 ...............................................
[CV] ................ C=10.0, gamma=1.0, score=0.066917, total= 6.9s
[CV] C=10.0, gamma=1.0 ...............................................
[CV] ................ C=10.0, gamma=1.0, score=0.058135, total= 6.8s
[CV] C=10.0, gamma=10.0 ..............................................
[CV] ............... C=10.0, gamma=10.0, score=0.241398, total= 6.9s
[CV] C=10.0, gamma=10.0 ..............................................
[CV] .............. C=10.0, gamma=10.0, score=-0.144938, total= 6.8s
[CV] C=10.0, gamma=10.0 ..............................................
[CV] ............... C=10.0, gamma=10.0, score=0.105497, total= 7.4s
[CV] C=10.0, gamma=10.0 ..............................................
[CV] ............... C=10.0, gamma=10.0, score=0.164871, total= 7.5s
[CV] C=10.0, gamma=10.0 ..............................................
[CV] ............... C=10.0, gamma=10.0, score=0.106260, total= 7.2s
[CV] C=10.0, gamma=100.0 .............................................
[CV] .............. C=10.0, gamma=100.0, score=0.291592, total= 11.6s
[CV] C=10.0, gamma=100.0 .............................................
[CV] ............. C=10.0, gamma=100.0, score=-0.111705, total= 9.8s
[CV] C=10.0, gamma=100.0 .............................................
[CV] .............. C=10.0, gamma=100.0, score=0.032269, total= 10.3s
[CV] C=10.0, gamma=100.0 .............................................
[CV] .............. C=10.0, gamma=100.0, score=0.226382, total= 11.6s
[CV] C=10.0, gamma=100.0 .............................................
[CV] .............. C=10.0, gamma=100.0, score=0.186434, total= 11.3s
[CV] C=100.0, gamma=0.01 .............................................
[CV] .............. C=100.0, gamma=0.01, score=0.050463, total= 6.8s
[CV] C=100.0, gamma=0.01 .............................................
[CV] ............. C=100.0, gamma=0.01, score=-0.075194, total= 6.6s
[CV] C=100.0, gamma=0.01 .............................................
[CV] ............. C=100.0, gamma=0.01, score=-0.015815, total= 6.7s
[CV] C=100.0, gamma=0.01 .............................................
[CV] ............. C=100.0, gamma=0.01, score=-0.000061, total= 6.7s
[CV] C=100.0, gamma=0.01 .............................................
[CV] .............. C=100.0, gamma=0.01, score=0.004607, total= 6.9s
[CV] C=100.0, gamma=0.1 ..............................................
[CV] ............... C=100.0, gamma=0.1, score=0.114250, total= 7.2s
[CV] C=100.0, gamma=0.1 ..............................................
[CV] .............. C=100.0, gamma=0.1, score=-0.111059, total= 6.4s
[CV] C=100.0, gamma=0.1 ..............................................
[CV] ............... C=100.0, gamma=0.1, score=0.040049, total= 7.1s
[CV] C=100.0, gamma=0.1 ..............................................
[CV] ............... C=100.0, gamma=0.1, score=0.005875, total= 6.8s
[CV] C=100.0, gamma=0.1 ..............................................
[CV] ............... C=100.0, gamma=0.1, score=0.044773, total= 6.6s
[CV] C=100.0, gamma=1.0 ..............................................
[CV] ............... C=100.0, gamma=1.0, score=0.205332, total= 7.9s
[CV] C=100.0, gamma=1.0 ..............................................
[CV] .............. C=100.0, gamma=1.0, score=-0.132981, total= 7.4s
[CV] C=100.0, gamma=1.0 ..............................................
[CV] ............... C=100.0, gamma=1.0, score=0.091491, total= 7.8s
[CV] C=100.0, gamma=1.0 ..............................................
[CV] ............... C=100.0, gamma=1.0, score=0.109235, total= 7.8s
[CV] C=100.0, gamma=1.0 ..............................................
[CV] ............... C=100.0, gamma=1.0, score=0.099567, total= 8.1s
[CV] C=100.0, gamma=10.0 .............................................
[CV] .............. C=100.0, gamma=10.0, score=0.283579, total= 13.4s
[CV] C=100.0, gamma=10.0 .............................................
[CV] ............. C=100.0, gamma=10.0, score=-0.113777, total= 13.4s
[CV] C=100.0, gamma=10.0 .............................................
[CV] .............. C=100.0, gamma=10.0, score=0.113940, total= 13.8s
[CV] C=100.0, gamma=10.0 .............................................
[CV] .............. C=100.0, gamma=10.0, score=0.145460, total= 13.4s
[CV] C=100.0, gamma=10.0 .............................................
[CV] .............. C=100.0, gamma=10.0, score=0.140119, total= 13.2s
[CV] C=100.0, gamma=100.0 ............................................
[CV] ............. C=100.0, gamma=100.0, score=0.332723, total= 36.8s
[CV] C=100.0, gamma=100.0 ............................................
[CV] ............ C=100.0, gamma=100.0, score=-0.076672, total= 34.8s
[CV] C=100.0, gamma=100.0 ............................................
[CV] ............ C=100.0, gamma=100.0, score=-0.119292, total= 38.2s
[CV] C=100.0, gamma=100.0 ............................................
[CV] ............. C=100.0, gamma=100.0, score=0.177133, total= 37.2s
[CV] C=100.0, gamma=100.0 ............................................
[CV] ............. C=100.0, gamma=100.0, score=0.178340, total= 35.9s
[CV] C=1000.0, gamma=0.01 ............................................
[CV] ............. C=1000.0, gamma=0.01, score=0.073104, total= 7.1s
[CV] C=1000.0, gamma=0.01 ............................................
[CV] ............ C=1000.0, gamma=0.01, score=-0.092889, total= 6.8s
[CV] C=1000.0, gamma=0.01 ............................................
[CV] ............. C=1000.0, gamma=0.01, score=0.008110, total= 7.3s
[CV] C=1000.0, gamma=0.01 ............................................
[CV] ............ C=1000.0, gamma=0.01, score=-0.055454, total= 7.3s
[CV] C=1000.0, gamma=0.01 ............................................
[CV] ............. C=1000.0, gamma=0.01, score=0.022106, total= 6.9s
[CV] C=1000.0, gamma=0.1 .............................................
[CV] .............. C=1000.0, gamma=0.1, score=0.164043, total= 9.2s
[CV] C=1000.0, gamma=0.1 .............................................
[CV] ............. C=1000.0, gamma=0.1, score=-0.118237, total= 8.6s
[CV] C=1000.0, gamma=0.1 .............................................
[CV] .............. C=1000.0, gamma=0.1, score=0.077162, total= 10.3s
[CV] C=1000.0, gamma=0.1 .............................................
[CV] .............. C=1000.0, gamma=0.1, score=0.027891, total= 9.5s
[CV] C=1000.0, gamma=0.1 .............................................
[CV] .............. C=1000.0, gamma=0.1, score=0.071619, total= 11.0s
[CV] C=1000.0, gamma=1.0 .............................................
[CV] .............. C=1000.0, gamma=1.0, score=0.200216, total= 20.9s
[CV] C=1000.0, gamma=1.0 .............................................
[CV] ............. C=1000.0, gamma=1.0, score=-0.090155, total= 19.4s
[CV] C=1000.0, gamma=1.0 .............................................
[CV] .............. C=1000.0, gamma=1.0, score=0.144339, total= 19.3s
[CV] C=1000.0, gamma=1.0 .............................................
[CV] ............. C=1000.0, gamma=1.0, score=-0.036648, total= 18.9s
[CV] C=1000.0, gamma=1.0 .............................................
[CV] .............. C=1000.0, gamma=1.0, score=0.135942, total= 21.2s
[CV] C=1000.0, gamma=10.0 ............................................
[CV] ............. C=1000.0, gamma=10.0, score=0.162697, total= 1.0min
[CV] C=1000.0, gamma=10.0 ............................................
[CV] ............ C=1000.0, gamma=10.0, score=-0.090666, total= 1.0min
[CV] C=1000.0, gamma=10.0 ............................................
[CV] ............. C=1000.0, gamma=10.0, score=0.059787, total= 56.2s
[CV] C=1000.0, gamma=10.0 ............................................
[CV] ............ C=1000.0, gamma=10.0, score=-0.194101, total= 1.0min
[CV] C=1000.0, gamma=10.0 ............................................
[CV] ............. C=1000.0, gamma=10.0, score=0.048385, total= 1.0min
[CV] C=1000.0, gamma=100.0 ...........................................
[CV] ............ C=1000.0, gamma=100.0, score=0.208142, total= 4.2min
[CV] C=1000.0, gamma=100.0 ...........................................
[CV] ........... C=1000.0, gamma=100.0, score=-0.093134, total= 4.2min
[CV] C=1000.0, gamma=100.0 ...........................................
[CV] ........... C=1000.0, gamma=100.0, score=-1.506402, total= 4.1min
[CV] C=1000.0, gamma=100.0 ...........................................
[CV] ........... C=1000.0, gamma=100.0, score=-0.572679, total= 4.5min
[CV] C=1000.0, gamma=100.0 ...........................................
[CV] ............ C=1000.0, gamma=100.0, score=0.026347, total= 4.7min
[Parallel(n_jobs=1)]: Done 100 out of 100 | elapsed: 47.4min finished
Out[195]:
GridSearchCV(cv=5, error_score='raise',
estimator=SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma=0.1,
kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False),
fit_params={}, iid=True, n_jobs=1,
param_grid={'C': [1.0, 10.0, 100.0, 1000.0], 'gamma': array([ 1.00000e-02, 1.00000e-01, 1.00000e+00, 1.00000e+01,
1.00000e+02])},
pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
scoring=None, verbose=10)