In [1]:
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
In [83]:
bench_df = pd.read_csv('cross_cov_benchmark.csv',
index_col = False,
header = False,
names = ['dims', 'samples', 'partitions', 'max_lag', 'avg_time'])
bench_df = bench_df[bench_df['partitions'] > 1]
In [84]:
bench_df.plot('dims', 'avg_time', kind = 'scatter')
Out[84]:
In [85]:
bench_df[(bench_df['partitions'] > 1.0)
& (bench_df['max_lag'] > 3)].plot('max_lag', 'avg_time', kind = 'scatter', c = 'partitions', cmap = 'winter', lw = 0)
Out[85]:
In [98]:
plt.scatter(bench_df['max_lag'].values,
bench_df['avg_time'].values,
s = bench_df['samples'].values / 1e4,
c = bench_df['partitions'].values,
cmap = 'winter',
lw = 0,
alpha = 0.4)
plt.xlabel('maximum lag')
plt.ylabel('100 averaged computational time in ms')
plt.title('Cross-covariance benchmark')
In [93]:
plt.scatter(np.log10(bench_df['samples'].values),
bench_df['avg_time'].values,
s = bench_df['max_lag'].values * 2,
c = bench_df['partitions'].values,
cmap = 'winter',
lw = 0,
alpha = 0.4)
Out[93]:
In [94]:
plt.scatter(bench_df['dims'].values,
bench_df['avg_time'].values,
s = bench_df['max_lag'].values * 2,
c = bench_df['partitions'].values,
cmap = 'winter',
lw = 0,
alpha = 0.4)
Out[94]:
In [ ]:
In [ ]:
In [ ]: