In [1]:
import pandas as pd
import numpy as np

from matplotlib import pyplot as plt
%matplotlib inline

In [83]:
bench_df = pd.read_csv('cross_cov_benchmark.csv',
                       index_col = False,
                       header = False, 
                       names = ['dims', 'samples', 'partitions', 'max_lag', 'avg_time'])

bench_df = bench_df[bench_df['partitions'] > 1]

In [84]:
bench_df.plot('dims', 'avg_time', kind = 'scatter')


Out[84]:
<matplotlib.axes._subplots.AxesSubplot at 0x10a917490>

In [85]:
bench_df[(bench_df['partitions'] > 1.0) 
         & (bench_df['max_lag'] > 3)].plot('max_lag', 'avg_time', kind = 'scatter', c = 'partitions', cmap = 'winter', lw = 0)


Out[85]:
<matplotlib.axes._subplots.AxesSubplot at 0x10a9299d0>

In [98]:
plt.scatter(bench_df['max_lag'].values, 
            bench_df['avg_time'].values, 
            s = bench_df['samples'].values / 1e4, 
            c = bench_df['partitions'].values,
            cmap = 'winter',
            lw = 0,
            alpha = 0.4)
plt.xlabel('maximum lag')
plt.ylabel('100 averaged computational time in ms')
plt.title('Cross-covariance benchmark')


---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-98-ddcff306d689> in <module>()
      8 plt.xlabel('maximum lag')
      9 plt.ylabel('100 averaged computational time in ms')
---> 10 plt.colormap()
     11 plt.title('Cross-covariance benchmark')

AttributeError: 'module' object has no attribute 'colormap'

In [93]:
plt.scatter(np.log10(bench_df['samples'].values), 
            bench_df['avg_time'].values, 
            s = bench_df['max_lag'].values * 2, 
            c = bench_df['partitions'].values,
            cmap = 'winter',
            lw = 0,
            alpha = 0.4)


Out[93]:
<matplotlib.collections.PathCollection at 0x10b43ba10>

In [94]:
plt.scatter(bench_df['dims'].values, 
            bench_df['avg_time'].values, 
            s = bench_df['max_lag'].values * 2, 
            c = bench_df['partitions'].values,
            cmap = 'winter',
            lw = 0,
            alpha = 0.4)


Out[94]:
<matplotlib.collections.PathCollection at 0x10b5bb9d0>

In [ ]:


In [ ]:


In [ ]: