In [5]:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
csv = np.genfromtxt('uranium_test_2019-02-19_D3S.csv', delimiter= ",").T
In [6]:
summed = np.sum(csv, axis=1)
plt.plot(summed)
plt.yscale('log')
plt.show()
In [7]:
def checkShape(i, data, r, e):
sweep = [data[i + dx] for dx in range(-r, r+1)]
prev=sweep[r]
if not prev == max(sweep): #or prev < np.average(data)/4:
return False
if not prev > np.average(sweep) * 1.5:
return False
for k in range(1, r+1):
if e < 0:
return False
if sweep[r-k] > prev:
e = e - 1
prev = sweep[r-k]
prev=sweep[r]
for k in range(1, r+1):
if e < 0:
return False
if sweep[r+k] > prev:
e = e - 1
prev = sweep[r+k]
return e >= 0
def sweepLeft(data, r=60, e=50):
bubbles = []
index = r
while index < len(data) - r:
if checkShape(index, data, r, e):
bubbles.append(index)
index = index + r - e
else:
index += 1
return bubbles
ldots = sweepLeft(summed)
print(ldots)
In [8]:
ldots = sweepLeft(summed, 60, 50)
print(ldots)
print(len(ldots))
print(np.average(summed)/4)
x=np.arange(len(summed))
plt.plot(summed)
plt.plot(x, np.average(summed)/4 + 0*x)
plt.plot(ldots, summed[ldots], 'ro')
plt.yscale('log')
plt.show()
In [9]:
tsv = np.genfromtxt('thorium_test_2019-02-19_D3S.csv', delimiter= ",").T
thor = np.sum(tsv, axis=1)
tdots = sweepLeft(thor, 100, 99)
print(tdots)
print(len(tdots))
print(np.average(thor)/4)
x=np.arange(len(thor))
plt.plot(thor)
plt.plot(x, np.average(thor/4) + 0*x)
plt.plot(tdots, thor[tdots], 'ro')
plt.yscale('log')
plt.show()
In [10]:
ksv = np.genfromtxt('k40_test_2019-02-11_D3S.csv', delimiter= ",").T
pot = np.sum(ksv, axis=1)
kdots = sweepLeft(pot, 100, 86)
print(kdots)
print(len(kdots))
print(np.average(pot)/2)
x=np.arange(len(pot))
plt.plot(pot)
plt.plot(x, np.average(pot)/4 + 0*x)
plt.plot(kdots, pot[kdots], 'ro')
plt.yscale('log')
plt.show()
In [36]:
u2sv = np.genfromtxt('Uranium_102566_2019-03-28_D3S.csv', delimiter= ",").T
u_sum = np.sum(u2sv, axis=1)
u2dots = sweepLeft(u_sum, 95, 94)
print(u2dots[0:10])
print(len(u2dots))
print(np.average(u_sum)/2)
x=np.arange(len(u_sum))
plt.plot(u_sum)
#plt.plot(x, np.average(u_sum)/4 + 0*x)
plt.plot(u2dots[0:10], u_sum[u2dots[0:10]], 'ro')
plt.yscale('log')
plt.show()
In [49]:
plt.plot(u_sum[0: 500])
p = 232
plt.plot(p, u_sum[p], 'ro')
plt.show()
In [ ]: