In [1]:
import os
import numpy as np
import csv
import datetime
import matplotlib.pyplot as plt
import sys
import argparse
In [2]:
path = 'C:/Users/emily/documents/Color_Detectors'
In [14]:
x = []
y = []
yerr = []
allCO2 = []
for filename in os.listdir(path):
print(filename)
with open(path+'/'+filename,'r') as f:
reader = csv.reader(f)
CO2 = []
err = []
for row in reader:
try:
CO2.append(float(row[1]))
err.append(float(row[2]))
except Exception as e:
print(e)
pass
CO2_avg = np.mean(np.array(CO2))
err_avg = np.std(np.array(CO2))
allCO2.append(CO2)
print(CO2_avg)
print(err_avg)
x.append(filename)
y.append(CO2_avg)
yerr.append(err_avg)
In [10]:
plt.plot(x, y)
plt.errorbar(x, y, yerr)
plt.xlabel('test')
plt.ylabel('ppm')
plt.title('Co2 Averages')
plt.show()
In [11]:
n, bins, patches = plt.hist(x=y, bins='auto')
plt.grid(axis='y')
plt.xlabel('ppm')
plt.ylabel('Frequency')
plt.title('CO2 Averages')
plt.show()
In [18]:
labels=["blue","clear_f","clear_b","pink","purple","white","yellow","red"]
for i in range(len(allCO2)):
n, bins, patches = plt.hist(x=allCO2[i], bins='auto', alpha=0.5, label=labels[i])
plt.legend(loc='upper right')
Out[18]:
In [12]:
Total_mean = np.mean(np.array(y))
Tmean = print('Total avg = {}'.format(Total_mean))
Total_std = np.std(np.array(y))
print('Total std = {}'.format(Total_std))
Ins_rms = np.square(np.array(yerr))
Total_rms = np.sqrt(np.sum(Ins_rms))
print('rms = {}'.format(Total_rms))
In [ ]:
In [ ]: