# Tuning hyper-parameters for accuracy
Fitting 5 folds for each of 24 candidates, totalling 120 fits
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[CV] ..................... C=1, gamma=0.001, kernel=rbf, total= 23.4s
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[CV] ..................... C=1, gamma=0.001, kernel=rbf, total= 23.6s
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[CV] ..................... C=1, gamma=0.001, kernel=rbf, total= 21.4s
[CV] C=1, gamma=0.001, kernel=rbf ....................................
[CV] ..................... C=1, gamma=0.001, kernel=rbf, total= 22.1s
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[CV] ..................... C=1, gamma=0.001, kernel=rbf, total= 22.0s
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[CV] .................... C=1, gamma=0.0001, kernel=rbf, total= 52.6s
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[CV] .................... C=1, gamma=0.0001, kernel=rbf, total= 55.7s
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[CV] .................... C=1, gamma=0.0001, kernel=rbf, total= 57.5s
[CV] C=1, gamma=0.0001, kernel=rbf ...................................
[CV] .................... C=1, gamma=0.0001, kernel=rbf, total= 52.7s
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[CV] .................... C=10, gamma=0.001, kernel=rbf, total= 12.6s
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[CV] .................... C=10, gamma=0.001, kernel=rbf, total= 11.9s
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[CV] .................... C=1, gamma=0.0001, kernel=rbf, total= 52.7s
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[CV] .................... C=10, gamma=0.001, kernel=rbf, total= 11.7s
[CV] C=10, gamma=0.001, kernel=rbf ...................................
[CV] .................... C=10, gamma=0.001, kernel=rbf, total= 12.2s
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[CV] .................... C=10, gamma=0.001, kernel=rbf, total= 11.3s
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[CV] ................... C=10, gamma=0.0001, kernel=rbf, total= 21.9s
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[CV] ................... C=10, gamma=0.0001, kernel=rbf, total= 23.7s
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[CV] ................... C=10, gamma=0.0001, kernel=rbf, total= 22.1s
[CV] C=10, gamma=0.0001, kernel=rbf ..................................
[CV] ................... C=10, gamma=0.0001, kernel=rbf, total= 22.2s
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[CV] ................... C=100, gamma=0.001, kernel=rbf, total= 9.3s
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[CV] ................... C=10, gamma=0.0001, kernel=rbf, total= 23.8s
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[CV] ................... C=100, gamma=0.001, kernel=rbf, total= 7.7s
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[CV] ................... C=100, gamma=0.001, kernel=rbf, total= 7.7s
[CV] C=100, gamma=0.001, kernel=rbf ..................................
[CV] ................... C=100, gamma=0.001, kernel=rbf, total= 7.9s
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[CV] ................... C=100, gamma=0.001, kernel=rbf, total= 7.2s
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[CV] .................. C=100, gamma=0.0001, kernel=rbf, total= 10.3s
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[CV] .................. C=100, gamma=0.0001, kernel=rbf, total= 10.7s
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[CV] .................. C=100, gamma=0.0001, kernel=rbf, total= 10.2s
[CV] C=100, gamma=0.0001, kernel=rbf .................................
[CV] .................. C=100, gamma=0.0001, kernel=rbf, total= 10.5s
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[CV] .................. C=100, gamma=0.0001, kernel=rbf, total= 10.1s
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[CV] .................. C=1000, gamma=0.001, kernel=rbf, total= 7.2s
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[CV] .................. C=1000, gamma=0.001, kernel=rbf, total= 7.7s
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[CV] .................. C=1000, gamma=0.001, kernel=rbf, total= 7.2s
[CV] C=1000, gamma=0.001, kernel=rbf .................................
[CV] .................. C=1000, gamma=0.001, kernel=rbf, total= 8.1s
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[CV] .................. C=1000, gamma=0.001, kernel=rbf, total= 8.3s
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[CV] ................. C=1000, gamma=0.0001, kernel=rbf, total= 8.4s
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[CV] ................. C=1000, gamma=0.0001, kernel=rbf, total= 8.5s
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[Parallel(n_jobs=2)]: Done 37 tasks | elapsed: 9.9min
[CV] ................. C=1000, gamma=0.0001, kernel=rbf, total= 8.1s
[CV] C=1000, gamma=0.0001, kernel=rbf ................................
[CV] ................. C=1000, gamma=0.0001, kernel=rbf, total= 8.7s
[CV] C=1, kernel=linear ..............................................
[CV] ................. C=1000, gamma=0.0001, kernel=rbf, total= 8.0s
[CV] C=1, kernel=linear ..............................................
[CV] ............................... C=1, kernel=linear, total= 9.3s
[CV] C=1, kernel=linear ..............................................
[CV] ............................... C=1, kernel=linear, total= 9.9s
[CV] C=1, kernel=linear ..............................................
[CV] ............................... C=1, kernel=linear, total= 9.5s
[CV] C=1, kernel=linear ..............................................
[CV] ............................... C=1, kernel=linear, total= 10.1s
[CV] C=10, kernel=linear .............................................
[CV] ............................... C=1, kernel=linear, total= 8.8s
[CV] C=10, kernel=linear .............................................
[CV] .............................. C=10, kernel=linear, total= 13.8s
[CV] C=10, kernel=linear .............................................
[CV] .............................. C=10, kernel=linear, total= 13.5s
[CV] C=10, kernel=linear .............................................
[CV] .............................. C=10, kernel=linear, total= 13.6s
[CV] C=10, kernel=linear .............................................
[CV] .............................. C=10, kernel=linear, total= 15.6s
[CV] C=100, kernel=linear ............................................
[CV] .............................. C=10, kernel=linear, total= 13.5s
[CV] C=100, kernel=linear ............................................
[CV] ............................. C=100, kernel=linear, total= 34.2s
[CV] C=100, kernel=linear ............................................
[CV] ............................. C=100, kernel=linear, total= 41.1s
[CV] C=100, kernel=linear ............................................
[CV] ............................. C=100, kernel=linear, total= 32.4s
[CV] C=100, kernel=linear ............................................
[CV] ............................. C=100, kernel=linear, total= 45.0s
[CV] C=1000, kernel=linear ...........................................
[CV] ............................. C=100, kernel=linear, total= 37.6s
[CV] C=1000, kernel=linear ...........................................
[CV] ............................ C=1000, kernel=linear, total= 1.6min
[CV] C=1000, kernel=linear ...........................................
[CV] ............................ C=1000, kernel=linear, total= 3.7min
[CV] C=1000, kernel=linear ...........................................
[CV] ............................ C=1000, kernel=linear, total= 3.2min
[CV] C=1000, kernel=linear ...........................................
[CV] ............................ C=1000, kernel=linear, total= 1.4min
[CV] C=1, degree=2, kernel=poly ......................................
[CV] ....................... C=1, degree=2, kernel=poly, total= 1.4min
[CV] C=1, degree=2, kernel=poly ......................................
[CV] ....................... C=1, degree=2, kernel=poly, total= 1.8min
[CV] C=1, degree=2, kernel=poly ......................................
[CV] ............................ C=1000, kernel=linear, total= 7.9min
[CV] C=1, degree=2, kernel=poly ......................................
[CV] ....................... C=1, degree=2, kernel=poly, total= 1.6min
[CV] C=1, degree=2, kernel=poly ......................................
[CV] ....................... C=1, degree=2, kernel=poly, total= 1.6min
[CV] C=1, degree=3, kernel=poly ......................................
[CV] ....................... C=1, degree=2, kernel=poly, total= 1.1min
[CV] C=1, degree=3, kernel=poly ......................................
[CV] ....................... C=1, degree=3, kernel=poly, total= 1.7min
[CV] C=1, degree=3, kernel=poly ......................................
[CV] ....................... C=1, degree=3, kernel=poly, total= 1.4min
[CV] C=1, degree=3, kernel=poly ......................................
[CV] ....................... C=1, degree=3, kernel=poly, total= 1.3min
[CV] C=1, degree=3, kernel=poly ......................................
[CV] ....................... C=1, degree=3, kernel=poly, total= 1.4min
[CV] C=1, degree=4, kernel=poly ......................................
[CV] ....................... C=1, degree=3, kernel=poly, total= 1.4min
[CV] C=1, degree=4, kernel=poly ......................................
[CV] ....................... C=1, degree=4, kernel=poly, total= 1.3min
[CV] C=1, degree=4, kernel=poly ......................................
[CV] ....................... C=1, degree=4, kernel=poly, total= 1.5min
[CV] C=1, degree=4, kernel=poly ......................................
[CV] ....................... C=1, degree=4, kernel=poly, total= 1.4min
[CV] C=1, degree=4, kernel=poly ......................................
[CV] ....................... C=1, degree=4, kernel=poly, total= 1.5min
[CV] C=10, degree=2, kernel=poly .....................................
[CV] ...................... C=10, degree=2, kernel=poly, total= 23.3s
[CV] C=10, degree=2, kernel=poly .....................................
[CV] ...................... C=10, degree=2, kernel=poly, total= 26.9s
[CV] C=10, degree=2, kernel=poly .....................................
[CV] ....................... C=1, degree=4, kernel=poly, total= 1.2min
[CV] C=10, degree=2, kernel=poly .....................................
[CV] ...................... C=10, degree=2, kernel=poly, total= 27.3s
[CV] C=10, degree=2, kernel=poly .....................................
[CV] ...................... C=10, degree=2, kernel=poly, total= 26.7s
[CV] C=10, degree=3, kernel=poly .....................................
[CV] ...................... C=10, degree=2, kernel=poly, total= 21.3s
[CV] C=10, degree=3, kernel=poly .....................................
[CV] ...................... C=10, degree=3, kernel=poly, total= 51.2s
[CV] C=10, degree=3, kernel=poly .....................................
[CV] ...................... C=10, degree=3, kernel=poly, total= 58.5s
[CV] C=10, degree=3, kernel=poly .....................................
[CV] ...................... C=10, degree=3, kernel=poly, total= 1.1min
[CV] C=10, degree=3, kernel=poly .....................................
[CV] ...................... C=10, degree=3, kernel=poly, total= 1.1min
[CV] C=10, degree=4, kernel=poly .....................................
[CV] ...................... C=10, degree=3, kernel=poly, total= 56.1s
[CV] C=10, degree=4, kernel=poly .....................................
[CV] ...................... C=10, degree=4, kernel=poly, total= 1.2min
[CV] C=10, degree=4, kernel=poly .....................................
[CV] ...................... C=10, degree=4, kernel=poly, total= 1.3min
[CV] C=10, degree=4, kernel=poly .....................................
[CV] ...................... C=10, degree=4, kernel=poly, total= 1.2min
[CV] C=10, degree=4, kernel=poly .....................................
[CV] ...................... C=10, degree=4, kernel=poly, total= 1.2min
[CV] C=100, degree=2, kernel=poly ....................................
[CV] ..................... C=100, degree=2, kernel=poly, total= 10.7s
[CV] C=100, degree=2, kernel=poly ....................................
[CV] ..................... C=100, degree=2, kernel=poly, total= 11.1s
[CV] C=100, degree=2, kernel=poly ....................................
[CV] ..................... C=100, degree=2, kernel=poly, total= 10.4s
[CV] C=100, degree=2, kernel=poly ....................................
[CV] ...................... C=10, degree=4, kernel=poly, total= 1.2min
[CV] C=100, degree=2, kernel=poly ....................................
[CV] ..................... C=100, degree=2, kernel=poly, total= 11.3s
[CV] C=100, degree=3, kernel=poly ....................................
[CV] ..................... C=100, degree=2, kernel=poly, total= 11.7s
[CV] C=100, degree=3, kernel=poly ....................................
[CV] ..................... C=100, degree=3, kernel=poly, total= 25.9s
[CV] C=100, degree=3, kernel=poly ....................................
[CV] ..................... C=100, degree=3, kernel=poly, total= 24.3s
[CV] C=100, degree=3, kernel=poly ....................................
[CV] ..................... C=100, degree=3, kernel=poly, total= 24.8s
[CV] C=100, degree=3, kernel=poly ....................................
[CV] ..................... C=100, degree=3, kernel=poly, total= 25.7s
[CV] C=100, degree=4, kernel=poly ....................................
[CV] ..................... C=100, degree=3, kernel=poly, total= 23.9s
[CV] C=100, degree=4, kernel=poly ....................................
[CV] ..................... C=100, degree=4, kernel=poly, total= 52.7s
[CV] C=100, degree=4, kernel=poly ....................................
[CV] ..................... C=100, degree=4, kernel=poly, total= 52.3s
[CV] C=100, degree=4, kernel=poly ....................................
[CV] ..................... C=100, degree=4, kernel=poly, total= 52.5s
[CV] C=100, degree=4, kernel=poly ....................................
[CV] ..................... C=100, degree=4, kernel=poly, total= 53.2s
[CV] C=1000, degree=2, kernel=poly ...................................
[CV] .................... C=1000, degree=2, kernel=poly, total= 6.5s
[CV] C=1000, degree=2, kernel=poly ...................................
[CV] .................... C=1000, degree=2, kernel=poly, total= 6.6s
[CV] C=1000, degree=2, kernel=poly ...................................
[CV] .................... C=1000, degree=2, kernel=poly, total= 6.6s
[CV] C=1000, degree=2, kernel=poly ...................................
[CV] .................... C=1000, degree=2, kernel=poly, total= 6.5s
[CV] C=1000, degree=2, kernel=poly ...................................
[CV] .................... C=1000, degree=2, kernel=poly, total= 6.3s
[CV] C=1000, degree=3, kernel=poly ...................................
[CV] ..................... C=100, degree=4, kernel=poly, total= 51.9s
[CV] C=1000, degree=3, kernel=poly ...................................
[CV] .................... C=1000, degree=3, kernel=poly, total= 12.5s
[CV] C=1000, degree=3, kernel=poly ...................................
[CV] .................... C=1000, degree=3, kernel=poly, total= 15.3s
[CV] C=1000, degree=3, kernel=poly ...................................
[CV] .................... C=1000, degree=3, kernel=poly, total= 12.9s
[CV] C=1000, degree=3, kernel=poly ...................................
[CV] .................... C=1000, degree=3, kernel=poly, total= 11.7s
[CV] C=1000, degree=4, kernel=poly ...................................
[CV] .................... C=1000, degree=3, kernel=poly, total= 13.1s
[CV] C=1000, degree=4, kernel=poly ...................................
[CV] .................... C=1000, degree=4, kernel=poly, total= 33.1s
[CV] C=1000, degree=4, kernel=poly ...................................
[CV] .................... C=1000, degree=4, kernel=poly, total= 30.0s
[CV] C=1000, degree=4, kernel=poly ...................................
[CV] .................... C=1000, degree=4, kernel=poly, total= 27.3s
[CV] C=1000, degree=4, kernel=poly ...................................
[CV] .................... C=1000, degree=4, kernel=poly, total= 27.6s
[CV] .................... C=1000, degree=4, kernel=poly, total= 26.9s
[Parallel(n_jobs=2)]: Done 120 out of 120 | elapsed: 61.9min finished
Best parameters set found on development set:
{'C': 1000, 'degree': 2, 'kernel': 'poly'}
Grid scores on development set:
0.961 (+/-0.013) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
0.937 (+/-0.009) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
0.974 (+/-0.011) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
0.959 (+/-0.011) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
0.983 (+/-0.007) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
0.969 (+/-0.012) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
0.987 (+/-0.005) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.971 (+/-0.010) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.966 (+/-0.009) for {'C': 1, 'kernel': 'linear'}
0.961 (+/-0.006) for {'C': 10, 'kernel': 'linear'}
0.953 (+/-0.010) for {'C': 100, 'kernel': 'linear'}
0.949 (+/-0.008) for {'C': 1000, 'kernel': 'linear'}
0.949 (+/-0.013) for {'C': 1, 'degree': 2, 'kernel': 'poly'}
0.526 (+/-0.007) for {'C': 1, 'degree': 3, 'kernel': 'poly'}
0.507 (+/-0.000) for {'C': 1, 'degree': 4, 'kernel': 'poly'}
0.974 (+/-0.009) for {'C': 10, 'degree': 2, 'kernel': 'poly'}
0.947 (+/-0.016) for {'C': 10, 'degree': 3, 'kernel': 'poly'}
0.547 (+/-0.008) for {'C': 10, 'degree': 4, 'kernel': 'poly'}
0.985 (+/-0.006) for {'C': 100, 'degree': 2, 'kernel': 'poly'}
0.977 (+/-0.008) for {'C': 100, 'degree': 3, 'kernel': 'poly'}
0.928 (+/-0.025) for {'C': 100, 'degree': 4, 'kernel': 'poly'}
0.991 (+/-0.004) for {'C': 1000, 'degree': 2, 'kernel': 'poly'}
0.987 (+/-0.006) for {'C': 1000, 'degree': 3, 'kernel': 'poly'}
0.967 (+/-0.011) for {'C': 1000, 'degree': 4, 'kernel': 'poly'}
Detailed classification report:
The model is trained on the full development set.
The scores are computed on the full evaluation set.
Scoring = accuracy
precision recall f1-score support
4 0.99 0.99 0.99 982
9 0.99 0.99 0.99 1009
avg / total 0.99 0.99 0.99 1991