_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 500, 100) 8858500
_________________________________________________________________
lstm_1 (LSTM) (None, 100) 80400
_________________________________________________________________
dense_1 (Dense) (None, 1) 101
=================================================================
Total params: 8,939,001
Trainable params: 80,501
Non-trainable params: 8,858,500
_________________________________________________________________
None
Train on 25000 samples, validate on 25000 samples
Epoch 1/15
4736/25000 [====>.........................] - ETA: 1473s - loss: 0.6935 - acc: 0.5158
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-10-e9a891ff4e95> in <module>()
5
6 rnn = RNN(train_x, train_y, test_x, test_y, embedding_layer = embedding_layer, dict_size=dict_size, embedding_length=embedding_length, example_length=example_length, epochs=epochs, batch_size=batch_size)
----> 7 rnn.train()
8 rnn.evaluate()
<ipython-input-2-195c58cfb106> in train(self)
45 '''
46 # TODO: fit in data to train your model
---> 47 self.model.fit(self.train_x, self.train_y, validation_data=(self.test_x, self.test_y), epochs=self.epochs, batch_size=self.batch_size)
48
49
~/anaconda2/envs/hwenv/lib/python3.6/site-packages/keras/models.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)
861 class_weight=class_weight,
862 sample_weight=sample_weight,
--> 863 initial_epoch=initial_epoch)
864
865 def evaluate(self, x, y, batch_size=32, verbose=1,
~/anaconda2/envs/hwenv/lib/python3.6/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)
1428 val_f=val_f, val_ins=val_ins, shuffle=shuffle,
1429 callback_metrics=callback_metrics,
-> 1430 initial_epoch=initial_epoch)
1431
1432 def evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None):
~/anaconda2/envs/hwenv/lib/python3.6/site-packages/keras/engine/training.py in _fit_loop(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)
1077 batch_logs['size'] = len(batch_ids)
1078 callbacks.on_batch_begin(batch_index, batch_logs)
-> 1079 outs = f(ins_batch)
1080 if not isinstance(outs, list):
1081 outs = [outs]
~/anaconda2/envs/hwenv/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
2266 updated = session.run(self.outputs + [self.updates_op],
2267 feed_dict=feed_dict,
-> 2268 **self.session_kwargs)
2269 return updated[:len(self.outputs)]
2270
~/anaconda2/envs/hwenv/lib/python3.6/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
765 try:
766 result = self._run(None, fetches, feed_dict, options_ptr,
--> 767 run_metadata_ptr)
768 if run_metadata:
769 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~/anaconda2/envs/hwenv/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
963 if final_fetches or final_targets:
964 results = self._do_run(handle, final_targets, final_fetches,
--> 965 feed_dict_string, options, run_metadata)
966 else:
967 results = []
~/anaconda2/envs/hwenv/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1013 if handle is None:
1014 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1015 target_list, options, run_metadata)
1016 else:
1017 return self._do_call(_prun_fn, self._session, handle, feed_dict,
~/anaconda2/envs/hwenv/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1020 def _do_call(self, fn, *args):
1021 try:
-> 1022 return fn(*args)
1023 except errors.OpError as e:
1024 message = compat.as_text(e.message)
~/anaconda2/envs/hwenv/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1002 return tf_session.TF_Run(session, options,
1003 feed_dict, fetch_list, target_list,
-> 1004 status, run_metadata)
1005
1006 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: