In [1]:
from extractMeanStdPSO import *
%load_ext autoreload
%autoreload 2
%matplotlib inline
In [5]:
fileName = "DOG_WorkingMemory_100_"
dir = "expPSO/DOG_WorkingMemory_100/"
repet= 50
nbEpoch=9900
batch = Batch.initOrLoad(dir,fileName,repet)
In [6]:
batch.saveFitnessEvolution()
In [13]:
batch.saveBestInd()
del batch
In [8]:
array = np.loadtxt("expPSO/pso_DOG_competition/fitnessEvolution.csv")
mean = np.mean(array,axis=1)
std = np.std(array,axis=1)/2.0
X = np.arange(nbEpoch)
plt.fill_between(X, mean - std,mean + std,color="green")
plt.plot(X, mean, color="white", lw=1)
plt.xlim(0,nbEpoch)
plt.xlabel("Epoch")
plt.ylabel("Mean RMSE")
Out[8]:
In [8]:
In [9]:
bestInd = Batch.loadBestInd(dir+"bestInd.pi")
In [10]:
def loadParams(paramList):
parameters = {}
for param in paramList:
parameters[param] = [d[param] for d in bestInd]
return parameters
In [11]:
params = loadParams(['iExc','iInh','wExc','wInh','h','th','tau'])
In [12]:
plt.figure(figsize=(10,10))
plt.subplot(221)
plt.plot(params['h'])
plt.plot(params['th'])
plt.subplot(222)
plt.plot(params['iExc'])
plt.plot(params['iInh'])
plt.subplot(223)
plt.plot(params['wExc'])
plt.plot(params['wInh'])
plt.subplot(224)
plt.plot(params['tau'])
Out[12]:
In [37]:
plt.plot(np.array(params['h'])-np.array(params['th']))
Out[37]:
In [35]:
fig, ax = plt.subplots()
mat = []
keys = ['not']
#row must be variable
for k in params.keys():
mat.append(params[k])
keys.append(k)
print(keys)
mat = [params[i] for i in params.keys()]
mat = np.array(mat)
print(mat.shape)
corr = np.corrcoef(mat)
plt.imshow(corr,interpolation='None',cmap='RdYlBu_r')
plt.clim(-1,1)
ax.set_xticklabels(keys)
ax.set_yticklabels(keys)
plt.colorbar()
Out[35]:
In [ ]: