In [1]:
%pylab inline
In [2]:
from pandas import read_csv
In [3]:
from kdcount import correlate
In [4]:
from kdcount import sphere
In [5]:
gal_flux = read_csv(
'/global/homes/y/yfeng1/m779/imaginglss/object_cats/ELG/ELG.txt.FLUXES',
delim_whitespace=True, comment='#', header=None).as_matrix()
gal_noise = read_csv('/global/homes/y/yfeng1/m779/imaginglss/object_cats/ELG/ELG.txt.NOISES',
delim_whitespace=True, comment='#', header=None).as_matrix()
gal_conf = gal_flux[:, 4:] / gal_noise[:, 3:]
gas_fc = read_csv('/global/homes/y/yfeng1/m779/imaginglss/object_cats/ELG/ELG.txt.FC',
delim_whitespace=True, comment='#', header=None).as_matrix()
In [7]:
ran = read_csv('/global/homes/y/yfeng1/m779/imaginglss/random_cats/ELG/ELG_rand.txt.NOISES',
delim_whitespace=True, comment='#').as_matrix()
In [11]:
ran_fc = read_csv('/global/homes/y/yfeng1/m779/imaginglss/random_cats/ELG/ELG_rand.txt.FC',
delim_whitespace=True, comment='#').as_matrix()
In [12]:
abin = sphere.AngularBinning(logspace(-4, -2.6, 10))
print abin.angular_centers
In [19]:
mask = (gal_conf[:, 0] > 5) & (gal_conf[:, 1] > 5) & (gal_conf[:, 3] > 3)
mask &= (gas_fc[:, 0] > 0.1)
In [20]:
print mask.sum()
print len(mask)
In [21]:
maskran = ran_fc[:, 0] > 0.1
In [22]:
D = sphere.points(gal_flux[mask][::1, 0], gal_flux[mask][::1, 1])
R = sphere.points(ran[maskran][::1, 0], ran[maskran][::1, 1],
weights=ran_fc[maskran][::1, 0])
In [23]:
DD = correlate.paircount(D, D, abin, np=8)
In [24]:
DR = correlate.paircount(D, R, abin, np=8)
In [17]:
plot(abin.angular_centers, 1.0 * (R.norm) / (D.norm) * DD.sum1 / DR.sum1 - 1, 'x')
xscale('log')
yscale('log')
In [25]:
plot(abin.angular_centers, 1.0 * (R.norm) / (D.norm) * DD.sum1 / DR.sum1 - 1, 'x')
xscale('log')
yscale('log')
In [26]:
plot(DD.sum1)
plot(DR.sum1 * R.norm / D.norm)
yscale('log')
In [ ]: