In [1]:
from science import *

In [2]:
temperature_data=pandas.read_csv('temperatures.txt',sep='\s*')  # cleaned version
sunspot_data=pandas.read_csv('spot_num.txt',sep='\s*')

In [7]:
x=temperature_data['Year']
y=temperature_data['J-D']/100.0

plot(x,y,'-o')
ylabel('Temperature Anomaly')
xlabel('Year')


Out[7]:
<matplotlib.text.Text at 0xb16db30>

In [12]:
x=sunspot_data['YEAR']+(sunspot_data['MON']-1)/12.0
y=sunspot_data['SSN']
plot(x,y,'-o')
xlabel('year')
ylabel('sunspot number')


Out[12]:
<matplotlib.text.Text at 0xb6d9730>

In [18]:


In [37]:
ax1=gca()
x=temperature_data['Year']
y=temperature_data['J-D']/100.0
plot(x,y,'-o')
ylabel('Temperature')

x=sunspot_data['YEAR']+(sunspot_data['MON']-1)/12.0
y=sunspot_data['SSN']
y2=pandas.rolling_mean(y,150)

ax2 = gca().twinx()
plot(x,y2,'r-')
ylabel('Sunspot Number')
ax2.set_ylim([20,120])
ax1.set_xlim([1880,2013])
ax2.set_xlim([1880,2013])


Out[37]:
(1880, 2013)

In [34]:
pandas.rolling_mean?

In [ ]: