In [1]:
%pylab inline
from classy import *
In [2]:
images=image.load_images('data/digits')
In [3]:
data=image.images_to_vectors(images)
In [4]:
data.vectors.shape
Out[4]:
In [5]:
data_train,data_test=split(data)
In [6]:
image.vector_to_image(data_train.vectors[800,:],(8,8))
only do this if you want to save the actual image
In [7]:
image.vector_to_image(data_train.vectors[800,:],(8,8),'test.png')
In [8]:
C=NaiveBayes()
In [9]:
timeit(reset=True)
C.fit(data_train.vectors,data_train.targets)
print(("Training time: ",timeit()))
In [10]:
print(("On Training Set:",C.percent_correct(data_train.vectors,data_train.targets)))
print(("On Test Set:",C.percent_correct(data_test.vectors,data_test.targets)))
In [11]:
C=CSC()
In [12]:
timeit(reset=True)
C.fit(data_train.vectors,data_train.targets)
print(("Training time: ",timeit()))
In [13]:
print(("On Training Set:",C.percent_correct(data_train.vectors,data_train.targets)))
print(("On Test Set:",C.percent_correct(data_test.vectors,data_test.targets)))
In [14]:
from classy import *
here the pattern translates to (note the asterisks "*" in the pattern)
In [15]:
data=image.load_images_from_filepatterns(this='data/digits/*/133*.png',
that='data/digits/*/123*.png',
)
In [16]:
summary(data)
In [ ]: