In [4]:
import pandas as pd

In [6]:
!ls


01 Pandas-Übung (Sven).ipynb         P3_GrantExport.csv
02 pandas II, dates & plotting.ipynb geckodriver.log
03 BeautifulSoup Übung.ipynb         scraped_and_cleand_six.csv
04 Selenium.ipynb

In [7]:
df = pd.read_csv('P3_GrantExport.csv', sep=';', error_bad_lines=False)


b'Skipping line 15384: expected 18 fields, saw 19\nSkipping line 19118: expected 18 fields, saw 22\nSkipping line 20104: expected 18 fields, saw 19\nSkipping line 22178: expected 18 fields, saw 23\nSkipping line 22426: expected 18 fields, saw 23\nSkipping line 24491: expected 18 fields, saw 24\nSkipping line 25196: expected 18 fields, saw 23\nSkipping line 25210: expected 18 fields, saw 25\nSkipping line 25782: expected 18 fields, saw 22\nSkipping line 30599: expected 18 fields, saw 24\nSkipping line 31698: expected 18 fields, saw 19\nSkipping line 31798: expected 18 fields, saw 20\nSkipping line 32463: expected 18 fields, saw 21\nSkipping line 32727: expected 18 fields, saw 19\nSkipping line 32743: expected 18 fields, saw 19\n'
b'Skipping line 32845: expected 18 fields, saw 25\nSkipping line 33518: expected 18 fields, saw 21\nSkipping line 33579: expected 18 fields, saw 21\nSkipping line 34695: expected 18 fields, saw 19\nSkipping line 34935: expected 18 fields, saw 25\nSkipping line 36780: expected 18 fields, saw 22\nSkipping line 37615: expected 18 fields, saw 21\nSkipping line 38179: expected 18 fields, saw 20\nSkipping line 38885: expected 18 fields, saw 21\nSkipping line 39205: expected 18 fields, saw 20\nSkipping line 39613: expected 18 fields, saw 19\nSkipping line 39714: expected 18 fields, saw 25\nSkipping line 40801: expected 18 fields, saw 20\nSkipping line 41887: expected 18 fields, saw 28\nSkipping line 42401: expected 18 fields, saw 19\nSkipping line 42723: expected 18 fields, saw 22\nSkipping line 43654: expected 18 fields, saw 19\nSkipping line 43714: expected 18 fields, saw 19\nSkipping line 44624: expected 18 fields, saw 28\nSkipping line 45468: expected 18 fields, saw 19\nSkipping line 45533: expected 18 fields, saw 19\nSkipping line 46015: expected 18 fields, saw 24\nSkipping line 46769: expected 18 fields, saw 20\nSkipping line 46965: expected 18 fields, saw 21\nSkipping line 48350: expected 18 fields, saw 23\nSkipping line 49503: expected 18 fields, saw 20\nSkipping line 49643: expected 18 fields, saw 19\nSkipping line 50113: expected 18 fields, saw 19\nSkipping line 51851: expected 18 fields, saw 19\nSkipping line 53013: expected 18 fields, saw 22\nSkipping line 56012: expected 18 fields, saw 25\nSkipping line 56597: expected 18 fields, saw 22\nSkipping line 57118: expected 18 fields, saw 21\nSkipping line 57673: expected 18 fields, saw 19\nSkipping line 57718: expected 18 fields, saw 23\nSkipping line 59877: expected 18 fields, saw 20\nSkipping line 60084: expected 18 fields, saw 19\nSkipping line 61668: expected 18 fields, saw 22\nSkipping line 62231: expected 18 fields, saw 20\nSkipping line 62581: expected 18 fields, saw 23\nSkipping line 63395: expected 18 fields, saw 19\nSkipping line 65217: expected 18 fields, saw 20\nSkipping line 65453: expected 18 fields, saw 22\nSkipping line 65549: expected 18 fields, saw 20\n'
b'Skipping line 65703: expected 18 fields, saw 22\nSkipping line 66263: expected 18 fields, saw 23\nSkipping line 66863: expected 18 fields, saw 20\nSkipping line 66867: expected 18 fields, saw 22\n'

In [9]:
df.info() #Aufgabe 2


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 67162 entries, 0 to 67161
Data columns (total 18 columns):
Project Number                  67162 non-null int64
Project Number String           67162 non-null object
Project Title                   67161 non-null object
Project Title English           26872 non-null object
Responsible Applicant           67162 non-null object
Funding Instrument              67162 non-null object
Funding Instrument Hierarchy    65362 non-null object
Institution                     61766 non-null object
Institution Country             61701 non-null object
University                      66893 non-null object
Discipline Number               67162 non-null int64
Discipline Name                 67162 non-null object
Discipline Name Hierarchy       66671 non-null object
All disciplines                 67161 non-null object
Start Date                      67160 non-null object
End Date                        67160 non-null object
Approved Amount                 67162 non-null object
Keywords                        42110 non-null object
dtypes: int64(2), object(16)
memory usage: 9.2+ MB

In [ ]:


In [19]:
df["Approved Amount"]


Out[19]:
0          11619.00
1          41022.00
2          79732.00
3          52627.00
4         120042.00
5          53009.00
6          25403.00
7          47100.00
8          25814.00
9         360000.00
10        153886.00
11        862200.00
12        116991.00
13        112664.00
14          5000.00
15        204018.00
16        149485.00
17         83983.00
18         38152.00
19         14138.00
20        164602.00
21        147795.00
22         24552.00
23         44802.00
24         56000.00
25        152535.00
26        225000.00
27        179124.00
28         20000.00
29        445198.00
            ...    
67132       4500.00
67133       8900.00
67134      21500.00
67135      12150.00
67136       7300.00
67137       5050.00
67138      10000.00
67139       4400.00
67140      12000.00
67141     180000.00
67142     180000.00
67143       8432.00
67144       5600.00
67145       8900.00
67146     180000.00
67147     180000.00
67148      13130.00
67149      10080.00
67150       3000.00
67151       9960.00
67152       2725.00
67153       4500.00
67154      11050.00
67155      15700.00
67156     180000.00
67157     180000.00
67158      25000.00
67159    1544165.00
67160       3360.00
67161       7575.00
Name: Approved Amount, Length: 67162, dtype: object

In [30]:
def comma(elem):
    try:
        elem = elem.split('.')[0]
        return int(elem)
    except:
        return 0

In [31]:
df["Approved Amount 2"] = df["Approved Amount"].apply(comma)

In [32]:
df["Approved Amount 2"].astype(int)


Out[32]:
0          11619
1          41022
2          79732
3          52627
4         120042
5          53009
6          25403
7          47100
8          25814
9         360000
10        153886
11        862200
12        116991
13        112664
14          5000
15        204018
16        149485
17         83983
18         38152
19         14138
20        164602
21        147795
22         24552
23         44802
24         56000
25        152535
26        225000
27        179124
28         20000
29        445198
          ...   
67132       4500
67133       8900
67134      21500
67135      12150
67136       7300
67137       5050
67138      10000
67139       4400
67140      12000
67141     180000
67142     180000
67143       8432
67144       5600
67145       8900
67146     180000
67147     180000
67148      13130
67149      10080
67150       3000
67151       9960
67152       2725
67153       4500
67154      11050
67155      15700
67156     180000
67157     180000
67158      25000
67159    1544165
67160       3360
67161       7575
Name: Approved Amount 2, Length: 67162, dtype: int64

In [33]:
df.info()


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 67162 entries, 0 to 67161
Data columns (total 19 columns):
Project Number                  67162 non-null int64
Project Number String           67162 non-null object
Project Title                   67161 non-null object
Project Title English           26872 non-null object
Responsible Applicant           67162 non-null object
Funding Instrument              67162 non-null object
Funding Instrument Hierarchy    65362 non-null object
Institution                     61766 non-null object
Institution Country             61701 non-null object
University                      66893 non-null object
Discipline Number               67162 non-null int64
Discipline Name                 67162 non-null object
Discipline Name Hierarchy       66671 non-null object
All disciplines                 67161 non-null object
Start Date                      67160 non-null object
End Date                        67160 non-null object
Approved Amount                 67162 non-null object
Keywords                        42110 non-null object
Approved Amount 2               67162 non-null int64
dtypes: int64(3), object(16)
memory usage: 9.7+ MB

In [38]:
df.groupby('Responsible Applicant')['Approved Amount 2'].sum().sort_values(ascending=False)


Out[38]:
Responsible Applicant
Ensslin Klaus                44841313
Keller Ursula                44391463
Francioli Patrick Bernard    40765287
Verrey François              38762922
Stocker Thomas               38631453
Riezman Howard               38251010
Duboule Denis                38240961
Aberer Karl                  33543850
Floreano Dario               33257764
Fischer Øystein              31732220
Benz Willy                   30527457
Spini Dario                  29674325
Aguet Michel                 26851256
Geiss Johannes               25032714
Vuilleumier Jean-Luc         24736514
Magistretti Pierre           24126777
Schönenberger Christian      24109956
Clark Allan Geoffrey         24015445
Günthard Huldrych Fritz      23690716
Grütter Markus Gerhard       22510238
Pretzl Klaus                 22300705
Wernli Boris                 22255073
Schneider Olivier            22117196
Bourlard Hervé               22022112
Ward Thomas R.               21900741
Troyon Francis               21087566
Mühlemann Oliver             21027099
Güntherodt Hans-Joachim      20400977
Scherer Klaus                19987580
Dayer Alexandre              19883931
                               ...   
Ioannidou Dimitra                   0
Inversini Alessandro                0
Invernizzi Cédric                   0
Invernizzi Antonella                0
Internicola Antonina                0
Interlandi Gianluca                 0
Unseld Sigrid                       0
Unal Kerem                          0
Isenring Giang Ly                   0
Umstätter Mamedova Lada             0
Iyer Vijay Mahadevan                0
Jacob Francis                       0
Uldry Marc                          0
Jackson Christopher B.              0
Jackett Sarah-Jane                  0
Jaccard Yves                        0
Ullrich Hannes                      0
Jaccard Ivan                        0
Jabes Adeline                       0
Ivanova Petya                       0
Ising Alexander                     0
Ittensohn Mark                      0
Itten Anatol                        0
Ulrich Thomas                       0
Itel Fabian                         0
Istrate Alena                       0
Ismail Sascha Asif                  0
Isliker Heinz                       0
Isliker Franziska                   0
Hueber Frédéric                     0
Name: Approved Amount 2, Length: 25442, dtype: int64

In [ ]:


In [29]:
string = '1544165.00'

In [26]:
string.split('.')[0]


Out[26]:
'1544165'

In [22]:
df["Approved Amount 2"]


Out[22]:
0        0
1        0
2        0
3        0
4        0
5        0
6        0
7        0
8        0
9        0
10       0
11       0
12       0
13       0
14       0
15       0
16       0
17       0
18       0
19       0
20       0
21       0
22       0
23       0
24       0
25       0
26       0
27       0
28       0
29       0
        ..
67132    0
67133    0
67134    0
67135    0
67136    0
67137    0
67138    0
67139    0
67140    0
67141    0
67142    0
67143    0
67144    0
67145    0
67146    0
67147    0
67148    0
67149    0
67150    0
67151    0
67152    0
67153    0
67154    0
67155    0
67156    0
67157    0
67158    0
67159    0
67160    0
67161    0
Name: Approved Amount 2, Length: 67162, dtype: object

In [ ]:


In [18]:
df["Approved Amount"]


Out[18]:
0          11619
1          41022
2          79732
3          52627
4         120042
5          53009
6          25403
7          47100
8          25814
9         360000
10        153886
11        862200
12        116991
13        112664
14          5000
15        204018
16        149485
17         83983
18         38152
19         14138
20        164602
21        147795
22         24552
23         44802
24         56000
25        152535
26        225000
27        179124
28         20000
29        445198
          ...   
67132       4500
67133       8900
67134      21500
67135      12150
67136       7300
67137       5050
67138      10000
67139       4400
67140      12000
67141     180000
67142     180000
67143       8432
67144       5600
67145       8900
67146     180000
67147     180000
67148      13130
67149      10080
67150       3000
67151       9960
67152       2725
67153       4500
67154      11050
67155      15700
67156     180000
67157     180000
67158      25000
67159    1544165
67160       3360
67161       7575
Name: Approved Amount, Length: 67162, dtype: object

In [19]:
df["Approved Amount"].astype(int)


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-19-46d97dc39a4f> in <module>()
----> 1 df["Approved Amount"].astype(int)

~/.virtualenvs/investigativ/lib/python3.6/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs)
     89                 else:
     90                     kwargs[new_arg_name] = new_arg_value
---> 91             return func(*args, **kwargs)
     92         return wrapper
     93     return _deprecate_kwarg

~/.virtualenvs/investigativ/lib/python3.6/site-packages/pandas/core/generic.py in astype(self, dtype, copy, errors, **kwargs)
   3408         # else, only a single dtype is given
   3409         new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors,
-> 3410                                      **kwargs)
   3411         return self._constructor(new_data).__finalize__(self)
   3412 

~/.virtualenvs/investigativ/lib/python3.6/site-packages/pandas/core/internals.py in astype(self, dtype, **kwargs)
   3222 
   3223     def astype(self, dtype, **kwargs):
-> 3224         return self.apply('astype', dtype=dtype, **kwargs)
   3225 
   3226     def convert(self, **kwargs):

~/.virtualenvs/investigativ/lib/python3.6/site-packages/pandas/core/internals.py in apply(self, f, axes, filter, do_integrity_check, consolidate, **kwargs)
   3089 
   3090             kwargs['mgr'] = self
-> 3091             applied = getattr(b, f)(**kwargs)
   3092             result_blocks = _extend_blocks(applied, result_blocks)
   3093 

~/.virtualenvs/investigativ/lib/python3.6/site-packages/pandas/core/internals.py in astype(self, dtype, copy, errors, values, **kwargs)
    469     def astype(self, dtype, copy=False, errors='raise', values=None, **kwargs):
    470         return self._astype(dtype, copy=copy, errors=errors, values=values,
--> 471                             **kwargs)
    472 
    473     def _astype(self, dtype, copy=False, errors='raise', values=None,

~/.virtualenvs/investigativ/lib/python3.6/site-packages/pandas/core/internals.py in _astype(self, dtype, copy, errors, values, klass, mgr, raise_on_error, **kwargs)
    519 
    520                 # _astype_nansafe works fine with 1-d only
--> 521                 values = astype_nansafe(values.ravel(), dtype, copy=True)
    522                 values = values.reshape(self.shape)
    523 

~/.virtualenvs/investigativ/lib/python3.6/site-packages/pandas/core/dtypes/cast.py in astype_nansafe(arr, dtype, copy)
    623     elif arr.dtype == np.object_ and np.issubdtype(dtype.type, np.integer):
    624         # work around NumPy brokenness, #1987
--> 625         return lib.astype_intsafe(arr.ravel(), dtype).reshape(arr.shape)
    626 
    627     if dtype.name in ("datetime64", "timedelta64"):

pandas/_libs/lib.pyx in pandas._libs.lib.astype_intsafe (pandas/_libs/lib.c:16264)()

pandas/_libs/src/util.pxd in util.set_value_at_unsafe (pandas/_libs/lib.c:73298)()

ValueError: invalid literal for int() with base 10: 'data not included in P3'

In [24]:
def invalid(elem):
    try:
        elem
        return int(elem)
    except ValueError:
        del elem

In [41]:
df["Approved Amount"].apply(invalid)


Out[41]:
0          11619.0
1          41022.0
2          79732.0
3          52627.0
4         120042.0
5          53009.0
6          25403.0
7          47100.0
8          25814.0
9         360000.0
10        153886.0
11        862200.0
12        116991.0
13        112664.0
14          5000.0
15        204018.0
16        149485.0
17         83983.0
18         38152.0
19         14138.0
20        164602.0
21        147795.0
22         24552.0
23         44802.0
24         56000.0
25        152535.0
26        225000.0
27        179124.0
28         20000.0
29        445198.0
           ...    
67132       4500.0
67133       8900.0
67134      21500.0
67135      12150.0
67136       7300.0
67137       5050.0
67138      10000.0
67139       4400.0
67140      12000.0
67141     180000.0
67142     180000.0
67143       8432.0
67144       5600.0
67145       8900.0
67146     180000.0
67147     180000.0
67148      13130.0
67149      10080.0
67150       3000.0
67151       9960.0
67152       2725.0
67153       4500.0
67154      11050.0
67155      15700.0
67156     180000.0
67157     180000.0
67158      25000.0
67159    1544165.0
67160       3360.0
67161       7575.0
Name: Approved Amount, Length: 67162, dtype: float64

In [26]:
df["Approved Amount"] = df["Approved Amount"].apply(invalid)

In [33]:
df["Approved Amount"].sum()/1000000 #Aufgabe 4


Out[33]:
14719.815766

In [56]:
df.info()


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 67162 entries, 0 to 67161
Data columns (total 19 columns):
Project Number                  67162 non-null int64
Project Number String           67162 non-null object
Project Title                   67161 non-null object
Project Title English           26872 non-null object
Responsible Applicant           67162 non-null object
Funding Instrument              67162 non-null object
Funding Instrument Hierarchy    65362 non-null object
Institution                     61766 non-null object
Institution Country             61701 non-null object
University                      66893 non-null object
Discipline Number               67162 non-null int64
Discipline Name                 67162 non-null object
Discipline Name Hierarchy       66671 non-null object
All disciplines                 67161 non-null object
Start Date                      67160 non-null object
End Date                        67160 non-null object
Approved Amount                 55637 non-null float64
Keywords                        42110 non-null object
Approved Amount Total           67162 non-null float64
dtypes: float64(2), int64(2), object(15)
memory usage: 9.7+ MB

In [55]:
df.groupby('University')["Approved Amount"].sum().sort_values(ascending=False).head(10) #Aufgabe 5


Out[55]:
University
University of Geneva – GE                                                                         2.090010e+09
University of Zurich – ZH                                                                         2.089479e+09
ETH Zurich – ETHZ                                                                                 1.865874e+09
University of Berne – BE                                                                          1.741320e+09
University of Basel – BS                                                                          1.512640e+09
EPF Lausanne – EPFL                                                                               1.381486e+09
University of Lausanne – LA                                                                       1.294302e+09
University of Fribourg – FR                                                                       5.031677e+08
University of Neuchatel – NE                                                                      4.238921e+08
Non-profit organisations (libraries, museums, academies, foundations) and administration – NPO    3.408352e+08
Name: Approved Amount, dtype: float64

In [13]:
df['Responsible Applicant'].value_counts().tail() #Aufgabe 3


Out[13]:
Mirzaaghaei Mehdi          1
Brühl Annette              1
Panizzon Renato G.         1
Sabbatini Marco            1
Denes Carpentier Ildiko    1
Name: Responsible Applicant, dtype: int64

In [16]:
df_new = pd.DataFrame(df['Responsible Applicant'].value_counts())

In [18]:
df_new[df_new['Responsible Applicant']< 30]


Out[18]:
Responsible Applicant
Schmid Stefan 29
Dietler Giovanni 29
Kreis Georg 29
Zenobi Renato 29
Clark Allan Geoffrey 28
Girault Hubert 28
Vogel Pierre 28
Oeschger Hans 28
Schneider Olivier 27
Lang Jürg 27
Burg Jean-Pierre 27
Martinoli Piero 27
Commission nationale pour la publication des DDS 27
Blondel Alain 27
Smith Ian F.C. 27
Ansermet Jean-Philippe 27
Oser Fritz 26
Ohmura Atsumu 26
Axhausen Kay W. 26
Tissot Laurent 26
Magnenat-Thalmann Nadia 26
Weis Antoine 25
Kuratorium der Helvetia Sacra c/o Staatsarchiv Basel 25
Ilegems Marc 25
Maier John Paul 25
Körner Christian 25
Keller Ursula 25
Pretzl Klaus 25
Bünzli Jean-Claude 24
Chopard Bastien 24
... ...
Volken Henri 1
Murr Rabih 1
Mortillaro Marcello 1
Baumann Philipp 1
Marti-Schindler Anna Regina 1
Meyer Sauteur Patrick M. 1
Schofield Emma 1
Conte Joël Pascal 1
Boillat Thomas 1
Ligier Yves 1
Müller-Wiesner Sandra 1
Joho Rolf 1
Alvarez Angel 1
Preisig Matthias 1
Weber Benedikt 1
Poltier Hugues 1
Dellsberger Rudolf 1
Gaillard François 1
Villemure Jean-Guy 1
Hegoburu Chloé 1
Wujastyk Dagmar 1
Gisler Othmar 1
Hostettler Maya 1
Gallo Fernanda 1
Fischer Ole W. 1
Mirzaaghaei Mehdi 1
Brühl Annette 1
Panizzon Renato G. 1
Sabbatini Marco 1
Denes Carpentier Ildiko 1

25414 rows × 1 columns


In [39]:
df.info()


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 67162 entries, 0 to 67161
Data columns (total 19 columns):
Project Number                  67162 non-null int64
Project Number String           67162 non-null object
Project Title                   67161 non-null object
Project Title English           26872 non-null object
Responsible Applicant           67162 non-null object
Funding Instrument              67162 non-null object
Funding Instrument Hierarchy    65362 non-null object
Institution                     61766 non-null object
Institution Country             61701 non-null object
University                      66893 non-null object
Discipline Number               67162 non-null int64
Discipline Name                 67162 non-null object
Discipline Name Hierarchy       66671 non-null object
All disciplines                 67161 non-null object
Start Date                      67160 non-null object
End Date                        67160 non-null object
Approved Amount                 67162 non-null object
Keywords                        42110 non-null object
Approved Amount 2               67162 non-null int64
dtypes: int64(3), object(16)
memory usage: 9.7+ MB

In [45]:
df_uni = pd.DataFrame(df.groupby('University')['Approved Amount 2'].mean())

In [47]:
df_uni['in mio'] = df_uni['Approved Amount 2'] / 1000000

In [50]:
df_uni.sort_values(by='in mio', ascending=False)


Out[50]:
Approved Amount 2 in mio
University
Swiss Centre of Expertise in the Social Sciences – FORS 1.969076e+06 1.969075
Swiss Center for Electronics and Microtech. – CSEM 6.296209e+05 0.629621
Swiss Institute of Allergy and Asthma Research – SIAF 4.356810e+05 0.435681
Idiap Research Institute – IDIAP 4.252486e+05 0.425249
Research Institute of Organic Agriculture – FiBL 4.154635e+05 0.415464
Institute Friedrich Miescher – FMI 4.051773e+05 0.405177
Biotechnology Institute Thurgau – BITG 3.558535e+05 0.355853
Swiss Institute of Bioinformatics – SIB 3.449561e+05 0.344956
Cantonal hospital of St.Gallen – KSPSG 3.141994e+05 0.314199
University of Geneva – GE 3.049343e+05 0.304934
Kantonsspital Baden – KSPB 2.963544e+05 0.296354
University of Basel – BS 2.956693e+05 0.295669
University of Berne – BE 2.943443e+05 0.294344
EPF Lausanne – EPFL 2.916988e+05 0.291699
University of Lausanne – LA 2.879467e+05 0.287947
University of Zurich – ZH 2.820952e+05 0.282095
ETH Zurich – ETHZ 2.786209e+05 0.278621
Haute école pédagogique du Valais/Pädagogische Hochschule Wallis – HEP-VS 2.783287e+05 0.278329
University of Neuchatel – NE 2.521666e+05 0.252167
Pädagogische Hochschule Thurgau – PHTG 2.489510e+05 0.248951
Institute for Research in Ophtalmology – IRO 2.484621e+05 0.248462
Physikal.-Meteorolog. Observatorium Davos – PMOD 2.471672e+05 0.247167
Università della Svizzera italiana – USI 2.439095e+05 0.243910
Ente Ospedaliero Cantonale – EOC 2.342570e+05 0.234257
Swiss Federal Laboratories for Materials Science and Technology – EMPA 2.324473e+05 0.232447
Research Institutes Agroscope – AGS 2.248560e+05 0.224856
Swiss Federal Institute of Aquatic Science and Technology – EAWAG 2.239121e+05 0.223912
Haute école pédagogique du canton de Fribourg/Pädagogische Hochschule Freiburg – HEP-FR 2.229490e+05 0.222949
Companies/ Private Industry – FP 2.226352e+05 0.222635
Kalaidos University of Applied Sciences – FHKD 2.209860e+05 0.220986
... ... ...
Interkantonale Hochschule für Heilpädagogik – HfH 1.641355e+05 0.164136
University of Applied Sciences Ostschweiz – FHO 1.640408e+05 0.164041
University of St.Gallen – SG 1.627570e+05 0.162757
Ostschweizer Kinderspital – OSKS 1.496490e+05 0.149649
Cardiocentro Ticino – CT 1.483015e+05 0.148302
University of Applied Sciences and Arts Western Switzerland – HES-SO 1.308101e+05 0.130810
Dipartimento formazione e apprendimento, Scuola universitaria professionale della Svizzera italiana – SUPSI-DFA 1.270429e+05 0.127043
Other Hospitals – ASPIT 1.238017e+05 0.123802
Pädagogische Hochschule Luzern – PHLU 1.227102e+05 0.122710
Institutes belonging to several higher education institutions – IMHS 1.023000e+05 0.102300
Institut für Kulturforschung Graubünden – IKG 1.016401e+05 0.101640
Kantonsspital Aarau – KSPA 9.659500e+04 0.096595
Haute école pédagogique du canton de Vaud – HEPL 9.578453e+04 0.095785
Robert Walser Foundation Bern – RWS 9.492983e+04 0.094930
Pädagogische Hochschule Schaffhausen – PHSH 9.218550e+04 0.092186
University Institute Kurt Bösch – IUKB 9.059159e+04 0.090592
Haute Ecole Pédagogique des cantons de Berne, du Jura et de Neuchâtel – HEP-BEJUNE 8.962571e+04 0.089626
Luzerner Kantonsspital – LUKS 8.937611e+04 0.089376
Pädagogische Hochschule Graubünden – PHGR 8.780186e+04 0.087802
Facoltà di Teologia di Lugano – FTL 7.947367e+04 0.079474
Zürcher Fachhochschule – ZFH 7.417360e+04 0.074174
Pädagogische Hochschule Zug – PHZG 6.479400e+04 0.064794
Unassignable – NA 5.399060e+04 0.053991
Istituto Svizzero di Roma – ISR 2.057143e+04 0.020571
Fernfachhochschule Schweiz (member of SUPSI) – FFHS 1.200000e+04 0.012000
Franklin University Switzerland – FUS 1.080800e+04 0.010808
Institut de recherche en réadaptation – réinsertion – IRR 1.050000e+04 0.010500
Staatsunabhängige Theologische Hochschule Basel – STH 5.766667e+03 0.005767
Institution abroad – IACH 1.273422e+03 0.001273
Institute for Research in Biomedicine – IRB 1.000000e+02 0.000100

87 rows × 2 columns


In [ ]: