In [9]:
from sklearn.preprocessing import StandardScaler
import numpy as np
import seaborn as sns
import scipy.stats as stats
import spacepy.toolbox as tb
import matplotlib.pyplot as plt
sns.set(font_scale=1.5)
%matplotlib inline
In [13]:
np.random.seed(123)
data = np.random.normal(10, 3.4, size=100)
In [14]:
sns.distplot(data)
Out[14]:
In [17]:
h, b = np.histogram(data, bins=7)
b = tb.bin_edges_to_center(b)
plt.plot(b, h)
Out[17]:
In [23]:
d = np.vstack((b,h)).T
In [24]:
scaler = StandardScaler()
print(scaler.fit(d))
In [33]:
scaler.mean_
Out[33]:
In [34]:
scaler.scale_
Out[34]:
In [38]:
trans = scaler.transform(d)
plt.plot(trans[:,0], trans[:,1])
plt.plot(b, h)
Out[38]:
In [39]:
scaler.inverse_transform(trans)
Out[39]:
In [42]:
plt.plot(trans[:,0], trans[:,1])
plt.plot(b, h)
plt.plot(scaler.inverse_transform(trans)[:,0], scaler.inverse_transform(trans)[:,1]+0.4)
Out[42]:
In [ ]: