In [1]:
import itertools
from pprint import pprint
from operator import getitem
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import numpy as np
import spacepy.plot as spp
import pymc as mc
import tqdm
In [11]:
data = mc.TruncatedNormal('data', -1, (4)**-2, -2, 10000, size=500).value
_ = spp.plt.hist(data, 30)
In [14]:
center = mc.Uniform('center', -2, 100)
dat = mc.TruncatedNormal('dat', center, 4**-2, -2, 10000, observed=True, value=data)
model = mc.MCMC((center, dat))
In [17]:
model.sample(10000, burn=100, burn_till_tuned=True, thin=15)
mc.Matplot.plot(model)
print(model.summary())
In [ ]:
In [ ]: