In [1]:
%matplotlib inline
%config InlineBackend.figure_format='retina'
from datacharm import *
from enerpi.api import enerpi_data_catalog
from enerpi.enerplot import plot_tile_last_24h, plot_power_consumption_hourly


# Catálogo y lectura de todos los datos.
cat = enerpi_data_catalog()
data_s = cat.get_summary(last_hours=1000)
data_s


 ==> Librerías, clases y métodos cargados:
 +++ "dt"                           +++ "os" 
 +++ "json" v:2.0.9                 +++ "pd" (pandas) v:0.18.1
 +++ "locale"                       +++ "plt" 
 +++ "math"                         +++ "re" v:2.2.1
 +++ "np" (numpy) v:1.11.1          +++ "sns" (seaborn) v:0.7.0
 +++ "sys" 
 ** "Colormap", "Line2D", "Normalize", "OrderedDict", "PathPatch", "namedtuple", "time"
 ==> Pretty printing funcs:
print_blue, print_bold, print_boldu, print_cyan, print_err, print_green, print_grey, print_greyb, print_info, print_infob, print_magenta, print_ok, print_red, print_redb, print_secc, print_tree_dict, print_warn, print_white, print_yellow, print_yellowb, printcolor
If you are in a jupyter notebook, insert this:
%matplotlib inline
%config InlineBackend.figure_format='retina'
If you are working with GEO data, insert this:
import geopandas as gpd
import shapely.geometry as sg
import cartopy.crs as ccrs
/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/matplotlib/__init__.py:1350: UserWarning:  This call to matplotlib.use() has no effect
because the backend has already been chosen;
matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
or matplotlib.backends is imported for the first time.

  warnings.warn(_use_error_msg)
***TIMEIT get_summary TOOK: 0.307 s
Out[1]:
kWh t_ref n_jump n_exec p_max p_mean p_min
ts
2016-08-12 10:00:00 0.071497 0.226328 2 0 348.0 317.0 296.0
2016-08-12 11:00:00 0.461430 1.000060 0 0 3452.0 461.0 299.0
2016-08-12 12:00:00 0.326755 0.999834 0 0 373.0 327.0 289.0
2016-08-12 13:00:00 0.363093 0.999993 0 0 871.0 363.0 296.0
2016-08-12 14:00:00 0.501344 0.999975 0 0 3304.0 501.0 208.0
2016-08-12 15:00:00 0.362595 1.000106 0 0 1475.0 363.0 248.0
2016-08-12 16:00:00 0.305348 1.000007 0 0 404.0 305.0 225.0
2016-08-12 17:00:00 0.368282 0.999868 0 0 900.0 368.0 304.0
2016-08-12 18:00:00 0.359484 1.000134 0 0 468.0 359.0 293.0
2016-08-12 19:00:00 0.357033 0.999837 0 0 908.0 357.0 294.0
2016-08-12 20:00:00 0.339244 1.000182 0 0 424.0 339.0 260.0
2016-08-12 21:00:00 0.319713 0.999861 0 0 2076.0 320.0 209.0
2016-08-12 22:00:00 0.223205 1.000062 0 0 247.0 223.0 200.0
2016-08-12 23:00:00 0.235032 1.000085 0 0 818.0 235.0 212.0
2016-08-13 00:00:00 0.273163 1.000049 0 0 814.0 273.0 201.0
2016-08-13 01:00:00 0.238602 0.999780 0 0 293.0 239.0 211.0
2016-08-13 02:00:00 0.232725 1.000175 0 0 786.0 233.0 203.0
2016-08-13 03:00:00 0.213644 0.999844 0 0 258.0 214.0 194.0
2016-08-13 04:00:00 0.213918 1.000024 0 0 816.0 214.0 196.0
2016-08-13 05:00:00 0.212647 1.000009 0 0 247.0 213.0 195.0
2016-08-13 06:00:00 0.214074 1.000019 0 0 809.0 214.0 196.0
2016-08-13 07:00:00 0.213130 0.999925 0 0 249.0 213.0 197.0
2016-08-13 08:00:00 0.370600 1.000230 0 0 3400.0 371.0 202.0
2016-08-13 09:00:00 0.272039 0.999762 0 0 413.0 272.0 232.0
2016-08-13 10:00:00 0.259136 1.000219 0 0 320.0 259.0 216.0
2016-08-13 11:00:00 0.294824 0.999963 0 0 922.0 295.0 231.0
2016-08-13 12:00:00 0.276144 1.000026 0 0 320.0 276.0 237.0
2016-08-13 13:00:00 0.289751 1.000010 0 0 858.0 290.0 245.0
2016-08-13 14:00:00 0.266304 0.999753 0 0 302.0 266.0 240.0
2016-08-13 15:00:00 0.359113 1.000039 0 0 869.0 359.0 247.0
... ... ... ... ... ... ... ...
2016-09-01 10:00:00 0.216010 1.000078 0 0 823.0 216.0 192.0
2016-09-01 11:00:00 0.205991 1.000014 0 0 231.0 206.0 190.0
2016-09-01 12:00:00 0.216427 1.000070 0 0 816.0 216.0 186.0
2016-09-01 13:00:00 0.205585 1.000004 0 0 228.0 206.0 191.0
2016-09-01 14:00:00 0.217650 1.000004 0 0 819.0 218.0 192.0
2016-09-01 15:00:00 0.207257 0.999988 0 0 236.0 207.0 192.0
2016-09-01 16:00:00 0.817654 0.999846 0 0 3184.0 818.0 192.0
2016-09-01 17:00:00 0.340359 0.999970 0 0 382.0 340.0 236.0
2016-09-01 18:00:00 0.302938 0.999998 0 0 393.0 303.0 199.0
2016-09-01 19:00:00 0.219488 0.999996 0 0 851.0 219.0 191.0
2016-09-01 20:00:00 0.288452 1.000107 0 0 508.0 288.0 199.0
2016-09-01 21:00:00 0.441770 1.000117 0 0 506.0 442.0 393.0
2016-09-01 22:00:00 0.346521 1.000028 0 0 928.0 347.0 239.0
2016-09-01 23:00:00 0.338695 0.999855 0 0 498.0 339.0 275.0
2016-09-02 00:00:00 0.318219 1.000045 0 0 863.0 318.0 259.0
2016-09-02 01:00:00 0.301778 0.999936 0 0 366.0 302.0 213.0
2016-09-02 02:00:00 0.237117 0.999950 0 0 796.0 237.0 204.0
2016-09-02 03:00:00 0.211544 0.999984 0 0 262.0 212.0 195.0
2016-09-02 04:00:00 0.211241 1.000018 0 0 792.0 211.0 193.0
2016-09-02 05:00:00 0.201899 1.000072 0 0 246.0 202.0 189.0
2016-09-02 06:00:00 0.210905 1.000000 0 0 788.0 211.0 189.0
2016-09-02 07:00:00 0.202320 0.999958 0 0 809.0 202.0 187.0
2016-09-02 08:00:00 0.319762 1.000071 0 0 2688.0 320.0 168.0
2016-09-02 09:00:00 0.305116 0.999905 0 0 828.0 305.0 171.0
2016-09-02 10:00:00 0.441348 1.000181 0 0 516.0 441.0 361.0
2016-09-02 11:00:00 0.056657 0.150569 0 0 464.0 376.0 331.0
2016-09-02 12:00:00 0.000000 NaN 0 0 NaN NaN NaN
2016-09-02 13:00:00 0.496293 0.906546 3 3 1669.0 567.0 320.0
2016-09-02 14:00:00 0.543383 1.000144 1 1 1734.0 546.0 312.0
2016-09-02 15:00:00 0.015472 0.039793 0 0 413.0 389.0 356.0

510 rows × 7 columns


In [60]:
data_s['completo'] = data_s.t_ref > .95
#data_s[~data_s['completo']]
#data_s[data_s['completo']].t_ref.plot()

#debug = None

def _roll_hour(x):
    completos = x['completo']
    #completos = x[x.completo]
    #idx = completos.index
    ##last = idx[-1]
    #global debug
    #if debug is None:
    #    debug = x
        
    x['delta_pond'] = (x.index[-1] - x.index).days
    x['pond'] = 1
    x.loc[x['delta_pond'] % 7 == 0, 'pond'] *= 3
    x.loc[x['delta_pond'] < 31, 'pond'] *= 2
    x.loc[x['delta_pond'] < 7, 'pond'] *= 2
    #x.loc[completos, 'kWh_c'] = 

    return pd.Series({'kWh_mean': np.mean(x[completos].kWh), 
                      'kWh_median': np.median(x[completos].kWh), 
                      'kWh_min': np.min(x[completos].kWh), 
                      'kWh_max': np.max(x[completos].kWh), 
                      'kWh_pond': (x.loc[completos, 'kWh'] * x.loc[completos, 'pond'] / x.loc[completos, 'pond'].sum()).sum()}).T
    
resumen = data_s.groupby(data_s.index.time).apply(_roll_hour)
resumen.plot()
resumen


Out[60]:
kWh_max kWh_mean kWh_median kWh_min kWh_pond
00:00:00 0.327747 0.256484 0.248539 0.191129 0.259648
01:00:00 0.304203 0.250057 0.240549 0.197164 0.255116
02:00:00 0.289150 0.235325 0.232945 0.191542 0.233976
03:00:00 0.271715 0.226451 0.219914 0.198104 0.222496
04:00:00 0.252653 0.220542 0.217848 0.191386 0.216446
05:00:00 0.265498 0.221857 0.218482 0.197867 0.215763
06:00:00 0.255174 0.220233 0.217727 0.188954 0.216067
07:00:00 0.296077 0.224046 0.218286 0.198262 0.216889
08:00:00 0.459738 0.289984 0.300320 0.205561 0.288664
09:00:00 0.836456 0.338475 0.299353 0.205598 0.319906
10:00:00 0.975249 0.392738 0.335956 0.206686 0.404455
11:00:00 0.819459 0.362924 0.348064 0.203157 0.378979
12:00:00 0.610755 0.353976 0.330699 0.207819 0.337692
13:00:00 1.206803 0.422734 0.346979 0.205585 0.379847
14:00:00 1.284630 0.496870 0.392266 0.209819 0.496756
15:00:00 1.415316 0.422399 0.319245 0.205866 0.372656
16:00:00 0.817654 0.340869 0.320243 0.194798 0.395428
17:00:00 0.469565 0.332298 0.342699 0.196362 0.321866
18:00:00 0.430459 0.335154 0.350210 0.193074 0.322620
19:00:00 0.839806 0.367844 0.366514 0.196456 0.327901
20:00:00 0.499794 0.348789 0.361523 0.191243 0.323951
21:00:00 1.165215 0.399241 0.382229 0.196098 0.379768
22:00:00 0.910010 0.403184 0.355888 0.191124 0.373843
23:00:00 0.558108 0.309598 0.320116 0.197018 0.308697

In [65]:
data_s['completo'] = data_s.t_ref > .95
data_s.loc[data_s.completo, 'pond'] = 1
data_s.loc[data_s.completo, 'kWh_c'] = data_s.loc[data_s.completo, 'kWh']
data_s['hay_datos'] = False
data_s.loc[data_s.t_ref > .1, 'hay_datos'] = True
#data_s.loc[~data_s.completo & , 'hay_datos'] = True


data_s[data_s.pond.isnull()]


Out[65]:
kWh t_ref n_jump n_exec p_max p_mean p_min completo pond kWh_c hay_datos
ts
2016-08-12 10:00:00 0.071497 0.226328 2 0 348.0 317.0 296.0 False NaN NaN True
2016-08-13 21:00:00 0.005417 0.017615 1 0 319.0 285.0 269.0 False NaN NaN False
2016-08-13 22:00:00 0.537020 0.755500 2 2 2124.0 675.0 312.0 False NaN NaN True
2016-08-16 19:00:00 0.283807 0.710373 1 1 936.0 399.0 259.0 False NaN NaN True
2016-08-16 22:00:00 0.060506 0.039242 0 0 2332.0 1542.0 270.0 False NaN NaN False
2016-08-16 23:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-17 00:00:00 0.158328 0.679451 1 1 274.0 234.0 208.0 False NaN NaN True
2016-08-17 14:00:00 0.200240 0.550776 1 1 1997.0 360.0 196.0 False NaN NaN True
2016-08-17 20:00:00 0.259621 0.566813 1 1 652.0 458.0 309.0 False NaN NaN True
2016-08-17 21:00:00 0.331131 0.848359 1 1 847.0 390.0 243.0 False NaN NaN True
2016-08-17 22:00:00 0.326135 0.799145 2 2 1735.0 414.0 206.0 False NaN NaN True
2016-08-18 12:00:00 0.229710 0.512776 1 1 2936.0 461.0 163.0 False NaN NaN True
2016-08-19 00:00:00 0.174805 0.694723 2 2 281.0 252.0 233.0 False NaN NaN True
2016-08-23 20:00:00 0.289441 0.837174 1 1 864.0 345.0 127.0 False NaN NaN True
2016-08-31 00:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 01:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 02:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 03:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 04:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 05:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 06:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 07:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 08:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 09:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 10:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 11:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 12:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 13:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 14:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 15:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 16:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 17:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 18:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 19:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 20:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 21:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 22:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-08-31 23:00:00 0.186494 0.884112 1 1 236.0 211.0 194.0 False NaN NaN True
2016-09-02 11:00:00 0.056657 0.150569 0 0 464.0 376.0 331.0 False NaN NaN True
2016-09-02 12:00:00 0.000000 NaN 0 0 NaN NaN NaN False NaN NaN False
2016-09-02 13:00:00 0.496293 0.906546 3 3 1669.0 567.0 320.0 False NaN NaN True
2016-09-02 15:00:00 0.015472 0.039793 0 0 413.0 389.0 356.0 False NaN NaN False

In [57]:
debug['delta_pond'] = (debug.index[-1] - debug.index).days
debug['pond'] = 1
debug.loc[debug['delta_pond'] % 7 == 0, 'pond'] *= 3
debug.loc[debug['delta_pond'] < 31, 'pond'] *= 2
debug.loc[debug['delta_pond'] < 7, 'pond'] *= 2
debug.loc[debug.completo, 'kWh_c'] = (debug.loc[debug.completo, 'kWh'] * debug.loc[debug.completo, 'pond'] / debug.loc[debug.completo, 'pond'].sum()).sum()


debug


Out[57]:
kWh t_ref n_jump n_exec p_max p_mean p_min completo delta_pond pond kWh_c
ts
2016-08-13 0.273163 1.000049 0 0 814.0 273.0 201.0 True 20 2 0.259648
2016-08-14 0.251060 1.000278 0 0 808.0 251.0 212.0 True 19 2 0.259648
2016-08-15 0.257088 0.999997 0 0 851.0 257.0 177.0 True 18 2 0.259648
2016-08-16 0.235938 0.999976 0 0 279.0 236.0 211.0 True 17 2 0.259648
2016-08-17 0.158328 0.679451 1 1 274.0 234.0 208.0 False 16 2 NaN
2016-08-18 0.290345 1.000076 0 0 820.0 290.0 168.0 True 15 2 0.259648
2016-08-19 0.174805 0.694723 2 2 281.0 252.0 233.0 False 14 6 NaN
2016-08-20 0.327747 1.000016 0 0 590.0 328.0 192.0 True 13 2 0.259648
2016-08-21 0.238063 0.999913 0 0 787.0 238.0 200.0 True 12 2 0.259648
2016-08-22 0.244336 1.000040 0 0 786.0 244.0 198.0 True 11 2 0.259648
2016-08-23 0.286855 1.000054 0 0 810.0 287.0 242.0 True 10 2 0.259648
2016-08-24 0.246019 1.000034 0 0 311.0 246.0 212.0 True 9 2 0.259648
2016-08-25 0.290849 1.000080 0 0 864.0 291.0 215.0 True 8 2 0.259648
2016-08-26 0.224600 1.000077 0 0 254.0 225.0 201.0 True 7 6 0.259648
2016-08-27 0.271557 1.000124 0 0 386.0 272.0 216.0 True 6 4 0.259648
2016-08-28 0.242331 1.000025 0 0 375.0 242.0 196.0 True 5 4 0.259648
2016-08-29 0.191129 1.000113 0 0 210.0 191.0 174.0 True 4 4 0.259648
2016-08-30 0.215345 1.000088 0 0 788.0 215.0 191.0 True 3 4 0.259648
2016-08-31 0.000000 NaN 0 0 NaN NaN NaN False 2 4 NaN
2016-09-01 0.212074 0.999891 3 0 807.0 212.0 192.0 True 1 4 0.259648
2016-09-02 0.318219 1.000045 0 0 863.0 318.0 259.0 True 0 12 0.259648

In [7]:
def reprocess_all_data(self, **kwargs_save):
    paths_w_summary = self.tree[(self.tree.key == self.key_summary) & self.tree.is_cat]
    for path in paths_w_summary.st:
        df = self.load_store(path)
        df_bis, df_s = self.process_data_summary(df)
        assert((df == df_bis).all().all())
        self._save_hdf([df_bis, df_s], path, [self.key_raw, self.key_summary], mode='w', **kwargs_save)
    
    
KWARGS_SAVE = dict(complevel=9, complib='blosc', fletcher32=True)
reprocess_all_data(cat, **KWARGS_SAVE)


DATA_YEAR_2016/DATA_2016_MONTH_08.h5
CURRENT_MONTH/DATA_2016_09_DAY_01.h5

In [8]:
data.index[0], data.index[-1], data.index.is_unique, data.index.is_monotonic_increasing


Out[8]:
(Timestamp('2016-08-29 12:00:00.875776'),
 Timestamp('2016-09-01 23:59:59.463868'),
 True,
 True)

In [60]:
%matplotlib inline
%config InlineBackend.figure_format='retina'
from datacharm import *
from enerpi.api import enerpi_data_catalog
from enerpi.enerplot import plot_tile_last_24h, plot_power_consumption_hourly


# Catálogo y lectura de todos los datos.
cat = enerpi_data_catalog()
data, data_s = cat.get_all_data(with_summary_data=True, async_get=True)


## Cambio de plot tile para LDR --> resample a 30 s y selección de valor mediano:
dplot = data.ldr.iloc[-100000:]

_, ax = plot_tile_last_24h(dplot.resample('30s').median(), barplot=False, color=(1, 1, 1))
ax.set_axis_bgcolor('#DBDD0D')
ax.patch.set_alpha(0.53)

# Anterior:
_, ax = plot_tile_last_24h(dplot.resample('5min').mean(), barplot=False, color=(1, 1, 1))
ax.set_axis_bgcolor('#DBDD0D')
ax.patch.set_alpha(0.53)


# plot_power_consumption_hourly(potencia, consumo, ldr=None, rs_potencia=None, rm_potencia=None, savefig=None)


***TIMEIT _get_all_data TOOK: 0.597 s
/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/numpy/core/_methods.py:59: RuntimeWarning: Mean of empty slice.
  warnings.warn("Mean of empty slice.", RuntimeWarning)

In [3]:
data.iloc[-100000:].ldr.plot(figsize=(18, 5))
plt.show()

f, ax = plot_tile_last_24h(data.power.iloc[-100000:], rs_data_s='5min', barplot=False, color=(.4, 0, .9))
plt.show()

f, ax = plot_tile_last_24h(data.ldr.iloc[-100000:], rm_data_s=120, barplot=False, color=(.9, .9, .1))
plt.show()

f, ax = plot_tile_last_24h(data.ldr.iloc[-100000:], rs_data_s='5min', barplot=False, color=(.8, .8, .1))
plt.show()



In [ ]:


In [61]:
#f, ax = plot_tile_last_24h(dplot.rolling(120).mean(), barplot=False, color=(1, 1, 1))
_, ax = plot_tile_last_24h(dplot.rolling(120).median(), barplot=False, color=(1, 1, 1))
ax.set_axis_bgcolor('#DBDD0D')
ax.patch.set_alpha(0.53)


d_rs = dplot.resample('5min', label='left')
f, ax = plot_tile_last_24h(d_rs.min(), barplot=False, alpha=1, alpha_fill=.5)
_, ax = plot_tile_last_24h(d_rs.max(), barplot=False, alpha=1, alpha_fill=.25, ax=ax)
ax.set_axis_bgcolor('#DBDD0D')
ax.patch.set_alpha(0.83)

_, ax = plot_tile_last_24h(dplot.resample('30s').median(), barplot=False, color=(1, 1, 1))
ax.set_axis_bgcolor('#DBDD0D')
ax.patch.set_alpha(0.53)


/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/numpy/core/_methods.py:59: RuntimeWarning: Mean of empty slice.
  warnings.warn("Mean of empty slice.", RuntimeWarning)

In [62]:
#data_tile = cat.get(last_hours=72, with_summary=False, async_get=True)
def _median(arr):
    if arr.empty:
        return 0
    else:
        return np.nanmedian(arr)
    

data_tile.ldr.resample('30s').apply(_median).head()

np.nanmedian?

In [49]:
%timeit data_tile.ldr.resample('30s').apply(lambda x: np.nanmedian(x) if not x.empty else 0).head()


1 loop, best of 3: 398 ms per loop

In [50]:
%timeit data_tile.ldr.resample('30s').apply(_median).head()


1 loop, best of 3: 392 ms per loop

In [51]:
%timeit data_tile.ldr.resample('30s').mean().head()


100 loops, best of 3: 3.34 ms per loop

In [52]:
%timeit data_tile.ldr.resample('30s').median().head()


/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/numpy/core/_methods.py:59: RuntimeWarning: Mean of empty slice.
  warnings.warn("Mean of empty slice.", RuntimeWarning)
1 loop, best of 3: 600 ms per loop

In [53]:
%timeit data_tile.ldr.resample('30s').apply(np.median).head()

%timeit data_tile.ldr.resample('30s').apply(np.nanmedian).head()


/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/numpy/core/_methods.py:59: RuntimeWarning: Mean of empty slice.
  warnings.warn("Mean of empty slice.", RuntimeWarning)
1 loop, best of 3: 586 ms per loop
/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/numpy/core/_methods.py:59: RuntimeWarning: Mean of empty slice.
  warnings.warn("Mean of empty slice.", RuntimeWarning)
1 loop, best of 3: 370 ms per loop

In [56]:
%timeit data_tile.ldr.resample('30s').fillna('ffill').apply(np.nanmedian).head()


/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/numpy/lib/nanfunctions.py:689: RuntimeWarning: All-NaN slice encountered
  warnings.warn("All-NaN slice encountered", RuntimeWarning)
1 loop, best of 3: 266 ms per loop

In [ ]:


In [64]:
last_data, last_data_c = cat.get(last_hours=72, with_summary=True)
print_info(last_data.head())
print_info(last_data.tail())
print_cyan(last_data_c.head())
print_cyan(last_data_c.tail())


                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-24 15:00:00.548185  289.843964  0.007828   83  641      False     False
2016-08-24 15:00:01.558416  293.640564  0.007826   80  641      False     False
2016-08-24 15:00:02.568252  294.414093  0.007704   80  641      False     False
2016-08-24 15:00:03.576464  290.377197  0.007561   77  641      False     False
2016-08-24 15:00:04.584932  282.730530  0.007690   82  640      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-27 15:05:10.444973  331.143250  0.007606   83  634      False     False
2016-08-27 15:05:11.449134  329.883728  0.007605   83  634      False     False
2016-08-27 15:05:12.458348  328.158447  0.007586   83  634      False     False
2016-08-27 15:05:13.458121  332.866119  0.007625   82  634      False     False
2016-08-27 15:05:14.464443  334.043243  0.007594   82  634      False     False
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-24 15:00:00  0.859483  1.000081       0       0  3276.0   859.0  204.0
2016-08-24 16:00:00  0.528163  0.999923       0       0  1883.0   528.0  194.0
2016-08-24 17:00:00  0.469565  1.000082       0       0  1472.0   470.0  251.0
2016-08-24 18:00:00  0.397262  0.999982       0       0  1540.0   397.0  213.0
2016-08-24 19:00:00  0.430325  1.000040       0       0   917.0   430.0  284.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-27 11:00:00  0.266174  0.999807       0       0   848.0   266.0  213.0
2016-08-27 12:00:00  0.239588  0.999926       0       0   287.0   240.0  201.0
2016-08-27 13:00:00  0.225906  1.000267       0       0   788.0   226.0  201.0
2016-08-27 14:00:00  0.456035  0.999767       0       0  3036.0   456.0  208.0
2016-08-27 15:00:00  0.025450  0.087587       0       0   849.0   291.0  260.0

In [ ]:


In [88]:
# TESTING SUMMARY:
today = pd.Timestamp.today()
this_month = today.replace(day=1).date()
first_date = cat.min_ts.date()
print(today, this_month, first_date)

if first_date < this_month:
    paths = pd.DatetimeIndex(start=first_date, freq='MS', end=this_month).tolist()
    paths += pd.DatetimeIndex(start=this_month, freq='D', end=today).tolist()
else:
    paths = pd.DatetimeIndex(start=first_date, freq='D', end=today).tolist()
paths = [cat._get_paths_interval(ts_ini=p, ts_fin=p)[0] for p in paths]

paths


2016-08-27 16:47:13.834464 2016-08-01 2016-08-12
Out[88]:
['CURRENT_MONTH/DATA_2016_08_DAY_12.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_13.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_14.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_15.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_16.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_17.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_18.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_19.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_20.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_21.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_22.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_23.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_24.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_25.h5',
 'CURRENT_MONTH/DATA_2016_08_DAY_26.h5',
 'CURRENT_MONTH/TODAY.h5']

In [98]:
for p in paths:
    p_st = os.path.join(cat.base_path, p)
    print_secc('PATH: {}'.format(p_st))
    df = pd.read_hdf(p_st, cat.key_raw)
    df_bis, df_s = cat.process_data_summary(df)
    try:
        df_s_saved = pd.read_hdf(p_st, cat.key_summary)
    except KeyError:
        print_warn('No hay summary')
        df_s_saved = df_s
    data_equal = (df == df_bis).all().all()
    summary_equal = (df_s_saved == df_s).all().all()
    if not summary_equal or not data_equal:
        print_err('DF == DF_BIS? {}; DF_S == DF_S_CALC? {}'.format(data_equal, summary_equal))
        print_blue('{}\n{}'.format(df.head(2), df.tail(2)))
        print_cyan('{}\n{}'.format(df_bis.head(2), df_bis.tail(2)))
        
        print_red('{}\n{}'.format(df_s_saved.head(2), df_s_saved.tail(2)))
        print_magenta('{}\n{}'.format(df_s.head(2), df_s.tail(2)))


 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_12.h5
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_13.h5
ERROR: DF == DF_BIS? False; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-13 00:00:00.784081  223.349731  0.009287   83   32       True      True
2016-08-13 00:00:01.785146  224.638718  0.009195   83   32       True      True
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-13 23:59:57.982120  246.012482  0.007201   84   35       True      True
2016-08-13 23:59:58.992496  243.784195  0.007142   84   34       True      True
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-13 00:00:00.784081  223.349731  0.009287   83   32      False     False
2016-08-13 00:00:01.785146  224.638718  0.009195   83   32      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-13 23:59:57.982120  246.012482  0.007201   84   35      False     False
2016-08-13 23:59:58.992496  243.784195  0.007142   84   34      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-13 00:00:00  0.273163  1.000047       0       0  814.0   273.0  201.0
2016-08-13 01:00:00  0.238602  0.999780       0       0  293.0   239.0  211.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-13 22:00:00  2.070342  1.982352       2       2  2124.0   675.0  312.0
2016-08-13 23:00:00  0.120417  0.354864       0       0   401.0   339.0  291.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-13 00:00:00  0.273163  1.000047       0       0  814.0   273.0  201.0
2016-08-13 01:00:00  0.238602  0.999780       0       0  293.0   239.0  211.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-13 22:00:00  2.070342  1.982352       2       2  2124.0   675.0  312.0
2016-08-13 23:00:00  0.320116  0.999967       0       0   402.0   320.0  236.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_14.h5
ERROR: DF == DF_BIS? False; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-14 00:00:00.002919  246.604477  0.007208   84   34       True      True
2016-08-14 00:00:01.004088  252.202866  0.007271   83   34       True      True
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-14 23:59:58.464272  298.025055  0.007649   84   39       True      True
2016-08-14 23:59:59.474740  293.809021  0.007555   84   39       True      True
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-14 00:00:00.002919  246.604477  0.007208   84   34      False     False
2016-08-14 00:00:01.004088  252.202866  0.007271   83   34      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-14 23:59:58.464272  298.025055  0.007649   84   39      False     False
2016-08-14 23:59:59.474740  293.809021  0.007555   84   39      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-14 00:00:00  0.251059  1.000275       0       0  808.0   251.0  212.0
2016-08-14 01:00:00  0.242496  0.999853       0       0  287.0   243.0  214.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-14 22:00:00  0.386972  1.000012       0       0  887.0   387.0  294.0
2016-08-14 23:00:00  0.199606  0.576791       0       0  458.0   346.0  304.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-14 00:00:00  0.251059  1.000275       0       0  808.0   251.0  212.0
2016-08-14 01:00:00  0.242496  0.999853       0       0  287.0   243.0  214.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-14 22:00:00  0.386972  1.000012       0       0  887.0   387.0  294.0
2016-08-14 23:00:00  0.328059  0.999930       0       0  458.0   328.0  279.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_15.h5
ERROR: DF == DF_BIS? False; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-15 00:00:00.485372  295.653412  0.007543   84   39       True      True
2016-08-15 00:00:01.485388  302.146240  0.007404   81   39       True      True
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-15 23:59:58.300572  249.893311  0.007402   84   35       True      True
2016-08-15 23:59:59.311180  248.625931  0.007340   84   35       True      True
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-15 00:00:00.485372  295.653412  0.007543   84   39      False     False
2016-08-15 00:00:01.485388  302.146240  0.007404   81   39      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-15 23:59:58.300572  249.893311  0.007402   84   35      False     False
2016-08-15 23:59:59.311180  248.625931  0.007340   84   35      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-15 00:00:00  0.257087  0.999994       0       0  851.0   257.0  177.0
2016-08-15 01:00:00  0.231033  1.000025       0       0  267.0   231.0  202.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-15 22:00:00  0.403624  0.999916       1       1  1896.0   407.0  206.0
2016-08-15 23:00:00  0.184828  0.548637       0       0   399.0   337.0  302.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-15 00:00:00  0.257087  0.999994       0       0  851.0   257.0  177.0
2016-08-15 01:00:00  0.231033  1.000025       0       0  267.0   231.0  202.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-15 22:00:00  0.403624  0.999916       1       1  1896.0   407.0  206.0
2016-08-15 23:00:00  0.317224  0.999969       0       0   399.0   317.0  216.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_16.h5
ERROR: DF == DF_BIS? True; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-16 00:00:00.321705  250.562973  0.007301   84   35      False     False
2016-08-16 00:00:01.329831  253.243912  0.007317   82   35      False     False
                                  power     noise  ref  ldr high_delta execution
ts                                                                              
2016-08-16 22:02:19.338707  2285.397461  0.005144   84   72      False     False
2016-08-16 22:02:20.349005  2273.201904  0.005190   84   72      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-16 00:00:00.321705  250.562973  0.007301   84   35      False     False
2016-08-16 00:00:01.329831  253.243912  0.007317   82   35      False     False
                                  power     noise  ref  ldr high_delta execution
ts                                                                              
2016-08-16 22:02:19.338707  2285.397461  0.005144   84   72      False     False
2016-08-16 22:02:20.349005  2273.201904  0.005190   84   72      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-16 00:00:00  0.235938  0.999976       0       0  279.0   236.0  211.0
2016-08-16 01:00:00  0.238055  1.000202       0       0  817.0   238.0  214.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-16 21:00:00  0.202495  0.517834       0       0   461.0   391.0  288.0
2016-08-16 22:00:00  0.060506  0.039242       0       0  2332.0  1542.0  270.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-16 00:00:00  0.235938  0.999976       0       0  279.0   236.0  211.0
2016-08-16 01:00:00  0.238055  1.000202       0       0  817.0   238.0  214.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-16 21:00:00  0.367758  0.999906       0       0  1027.0   368.0  252.0
2016-08-16 22:00:00  0.060506  0.039242       0       0  2332.0  1542.0  270.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_17.h5
ERROR: DF == DF_BIS? True; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-17 00:21:13.076529  222.561279  0.007420   84   20      False     False
2016-08-17 00:21:14.083950  224.295410  0.007478   82   16      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-17 23:59:58.364683  338.584625  0.007169   81   38      False     False
2016-08-17 23:59:59.372437  335.615997  0.007221   82   38      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-17 00:21:13.076529  222.561279  0.007420   84   20      False     False
2016-08-17 00:21:14.083950  224.295410  0.007478   82   16      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-17 23:59:58.364683  338.584625  0.007169   81   38      False     False
2016-08-17 23:59:59.372437  335.615997  0.007221   82   38      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-17 00:00:00  0.150972  0.646398       0       0  274.0   234.0  208.0
2016-08-17 01:00:00  0.246444  1.000204       0       0  831.0   246.0  211.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-17 22:00:00  0.394748  0.999808       2       2  1735.0   414.0  206.0
2016-08-17 23:00:00  0.347437  0.967882       0       0  2006.0   359.0  201.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-17 00:00:00  0.150972  0.646398       0       0  274.0   234.0  208.0
2016-08-17 01:00:00  0.246444  1.000204       0       0  831.0   246.0  211.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-17 22:00:00  0.394748  0.999808       2       2  1735.0   414.0  206.0
2016-08-17 23:00:00  0.358426  1.000040       0       0  2006.0   358.0  201.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_18.h5
ERROR: DF == DF_BIS? True; DF_S == DF_S_CALC? False
                                power     noise  ref  ldr high_delta execution
ts                                                                            
2016-08-18 00:00:00.376259  327.75000  0.007362   79   38      False     False
2016-08-18 00:00:01.377769  329.64978  0.007500   76   39      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-18 23:59:58.764487  258.835571  0.006968   84   25      False     False
2016-08-18 23:59:59.775426  261.035095  0.006990   84   31      False     False
                                power     noise  ref  ldr high_delta execution
ts                                                                            
2016-08-18 00:00:00.376259  327.75000  0.007362   79   38      False     False
2016-08-18 00:00:01.377769  329.64978  0.007500   76   39      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-18 23:59:58.764487  258.835571  0.006968   84   25      False     False
2016-08-18 23:59:59.775426  261.035095  0.006990   84   31      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-18 00:00:00  0.290345  1.000075       0       0  820.0   290.0  168.0
2016-08-18 01:00:00  0.232337  0.999977       0       0  349.0   232.0  112.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-18 22:00:00  0.346483  0.999886       0       0  471.0   347.0  312.0
2016-08-18 23:00:00  0.301713  0.897652       0       0  882.0   336.0  245.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-18 00:00:00  0.290345  1.000075       0       0  820.0   290.0  168.0
2016-08-18 01:00:00  0.232337  0.999977       0       0  349.0   232.0  112.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-18 22:00:00  0.346483  0.999886       0       0  471.0   347.0  312.0
2016-08-18 23:00:00  0.328388  1.000172       0       0  882.0   328.0  245.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_19.h5
ERROR: DF == DF_BIS? True; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-19 00:00:00.793563  264.122131  0.006978   76   33      False     False
2016-08-19 00:00:01.799849  269.880646  0.006869   76   34      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-19 23:59:58.919944  396.028351  0.006444   65   45      False     False
2016-08-19 23:59:59.925434  400.639099  0.006511   80   38      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-19 00:00:00.793563  264.122131  0.006978   76   33      False     False
2016-08-19 00:00:01.799849  269.880646  0.006869   76   34      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-19 23:59:58.919944  396.028351  0.006444   65   45      False     False
2016-08-19 23:59:59.925434  400.639099  0.006511   80   38      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-19 00:00:00  0.251378  0.999786       2       2  281.0   252.0  233.0
2016-08-19 01:00:00  0.266589  1.000118       1       1  412.0   266.0  207.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-19 22:00:00  0.910010  1.000092       0       0  5016.0   910.0  246.0
2016-08-19 23:00:00  0.143804  0.372659       0       0   515.0   386.0  277.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-19 00:00:00  0.251378  0.999786       2       2  281.0   252.0  233.0
2016-08-19 01:00:00  0.266589  1.000118       1       1  412.0   266.0  207.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-19 22:00:00  0.910010  1.000092       0       0  5016.0   910.0  246.0
2016-08-19 23:00:00  0.405113  1.000002       0       0   607.0   405.0  277.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_20.h5
ERROR: DF == DF_BIS? True; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-20 00:00:00.930517  414.855499  0.006647   83   42      False     False
2016-08-20 00:00:01.930558  441.295135  0.006611   79   42      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-20 23:59:58.662129  231.120514  0.007764   81   30      False     False
2016-08-20 23:59:59.664436  231.017303  0.007734   81   29      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-20 00:00:00.930517  414.855499  0.006647   83   42      False     False
2016-08-20 00:00:01.930558  441.295135  0.006611   79   42      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-20 23:59:58.662129  231.120514  0.007764   81   30      False     False
2016-08-20 23:59:59.664436  231.017303  0.007734   81   29      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-20 00:00:00  0.327746  1.000015       0       0  590.0   328.0  192.0
2016-08-20 01:00:00  0.253046  0.999829       0       0  631.0   253.0  122.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-20 22:00:00  0.240016  1.000196       0       0  752.0   240.0  173.0
2016-08-20 23:00:00  0.145678  0.522620       0       0  849.0   279.0  209.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-20 00:00:00  0.327746  1.000015       0       0  590.0   328.0  192.0
2016-08-20 01:00:00  0.253046  0.999829       0       0  631.0   253.0  122.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-20 22:00:00  0.240016  1.000196       0       0  752.0   240.0  173.0
2016-08-20 23:00:00  0.257742  0.999990       0       0  849.0   258.0  199.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_21.h5
ERROR: DF == DF_BIS? True; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-21 00:00:00.675817  235.900803  0.007757   82   30      False     False
2016-08-21 00:00:01.679241  240.073227  0.007754   80   30      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-21 23:59:58.541229  231.446762  0.007806   84   31      False     False
2016-08-21 23:59:59.551625  231.666275  0.007788   84   31      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-21 00:00:00.675817  235.900803  0.007757   82   30      False     False
2016-08-21 00:00:01.679241  240.073227  0.007754   80   30      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-21 23:59:58.541229  231.446762  0.007806   84   31      False     False
2016-08-21 23:59:59.551625  231.666275  0.007788   84   31      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-21 00:00:00  0.238063  0.999911       0       0  787.0   238.0  200.0
2016-08-21 01:00:00  0.296682  1.000154       0       0  432.0   297.0  210.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-21 22:00:00  0.355888  0.999914       0       0  892.0   356.0  320.0
2016-08-21 23:00:00  0.198115  0.689859       0       0  390.0   287.0  218.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-21 00:00:00  0.238063  0.999911       0       0  787.0   238.0  200.0
2016-08-21 01:00:00  0.296682  1.000154       0       0  432.0   297.0  210.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-21 22:00:00  0.355888  0.999914       0       0  892.0   356.0  320.0
2016-08-21 23:00:00  0.269552  1.000070       0       0  390.0   270.0  218.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_22.h5
ERROR: DF == DF_BIS? True; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-22 00:00:00.562102  228.107544  0.007777   84   32      False     False
2016-08-22 00:00:01.572570  234.285889  0.007748   84   32      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-22 23:59:58.771425  338.310730  0.007478   84   36      False     False
2016-08-22 23:59:59.782355  340.466675  0.007396   84   36      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-22 00:00:00.562102  228.107544  0.007777   84   32      False     False
2016-08-22 00:00:01.572570  234.285889  0.007748   84   32      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-22 23:59:58.771425  338.310730  0.007478   84   36      False     False
2016-08-22 23:59:59.782355  340.466675  0.007396   84   36      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-22 00:00:00  0.244336  1.000040       0       0  786.0   244.0  198.0
2016-08-22 01:00:00  0.264752  0.999899       0       0  828.0   265.0  214.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-22 22:00:00  0.443081  1.000052       0       0  2792.0   443.0  248.0
2016-08-22 23:00:00  0.032893  0.089656       0       0   425.0   367.0  321.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-22 00:00:00  0.244336  1.000040       0       0  786.0   244.0  198.0
2016-08-22 01:00:00  0.264752  0.999899       0       0  828.0   265.0  214.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-22 22:00:00  0.443081  1.000052       0       0  2792.0   443.0  248.0
2016-08-22 23:00:00  0.353989  1.000060       0       0   425.0   354.0  312.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_23.h5
ERROR: DF == DF_BIS? True; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-23 00:00:00.788150  343.017334  0.007433   83   37      False     False
2016-08-23 00:00:01.797842  338.389099  0.007571   81   37      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-23 23:59:58.359326  263.169434  0.007732   84   33      False     False
2016-08-23 23:59:59.360019  253.677887  0.007589   83   33      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-23 00:00:00.788150  343.017334  0.007433   83   37      False     False
2016-08-23 00:00:01.797842  338.389099  0.007571   81   37      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-23 23:59:58.359326  263.169434  0.007732   84   33      False     False
2016-08-23 23:59:59.360019  253.677887  0.007589   83   33      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-23 00:00:00  0.286856  1.000055       0       0  810.0   287.0  242.0
2016-08-23 01:00:00  0.261935  0.999902       0       0  300.0   262.0  245.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-23 22:00:00  0.825467  0.999887       0       0  4028.0   825.0  180.0
2016-08-23 23:00:00  0.362792  0.998046       0       0   490.0   364.0  176.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-23 00:00:00  0.286856  1.000055       0       0  810.0   287.0  242.0
2016-08-23 01:00:00  0.261935  0.999902       0       0  300.0   262.0  245.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-23 22:00:00  0.825467  0.999887       0       0  4028.0   825.0  180.0
2016-08-23 23:00:00  0.363301  1.000002       0       0   490.0   363.0  176.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_24.h5
ERROR: DF == DF_BIS? True; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-24 00:00:00.371214  249.948654  0.007549   84   32      False     False
2016-08-24 00:00:01.381577  248.460434  0.007760   83   31      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-24 23:59:58.170438  278.057404  0.007622   84   39      False     False
2016-08-24 23:59:59.181140  279.011688  0.007572   84   39      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-24 00:00:00.371214  249.948654  0.007549   84   32      False     False
2016-08-24 00:00:01.381577  248.460434  0.007760   83   31      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-24 23:59:58.170438  278.057404  0.007622   84   39      False     False
2016-08-24 23:59:59.181140  279.011688  0.007572   84   39      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-24 00:00:00  0.246019  1.000034       0       0  311.0   246.0  212.0
2016-08-24 01:00:00  0.234884  1.000115       0       0  825.0   235.0  178.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-24 22:00:00  0.463818  0.999951       0       0  1765.0   464.0  189.0
2016-08-24 23:00:00  0.055366  0.160836       0       0   441.0   344.0  216.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-24 00:00:00  0.246019  1.000034       0       0  311.0   246.0  212.0
2016-08-24 01:00:00  0.234884  1.000115       0       0  825.0   235.0  178.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-24 22:00:00  0.463818  0.999951       0       0  1765.0   464.0  189.0
2016-08-24 23:00:00  0.327397  0.999914       0       0   462.0   327.0  216.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_25.h5
ERROR: DF == DF_BIS? True; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-25 00:00:00.192150  282.542145  0.007581   84   40      False     False
2016-08-25 00:00:01.210995  294.714203  0.007569   82   34      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-25 23:59:58.187365  229.744781  0.007563   84   30      False     False
2016-08-25 23:59:59.198068  229.011017  0.007479   84   30      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-25 00:00:00.192150  282.542145  0.007581   84   40      False     False
2016-08-25 00:00:01.210995  294.714203  0.007569   82   34      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-25 23:59:58.187365  229.744781  0.007563   84   30      False     False
2016-08-25 23:59:59.198068  229.011017  0.007479   84   30      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-25 00:00:00  0.290849  1.000082       0       0  864.0   291.0  215.0
2016-08-25 01:00:00  0.298059  0.999885       0       0  449.0   298.0  153.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-25 22:00:00  0.400394  1.000128       0       0  1797.0   400.0  217.0
2016-08-25 23:00:00  0.107000  0.332672       0       0   840.0   322.0  183.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-25 00:00:00  0.290849  1.000082       0       0  864.0   291.0  215.0
2016-08-25 01:00:00  0.298059  0.999885       0       0  449.0   298.0  153.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-25 22:00:00  0.400394  1.000128       0       0  1797.0   400.0  217.0
2016-08-25 23:00:00  0.275033  0.999844       0       0   840.0   275.0  183.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_26.h5
ERROR: DF == DF_BIS? True; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-26 00:00:00.208880  231.718033  0.007364   84   30      False     False
2016-08-26 00:00:01.215315  233.804504  0.007486   81   30      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-26 23:59:58.024840  330.056946  0.007354   84   40      False     False
2016-08-26 23:59:59.035586  329.158813  0.007397   84   40      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-26 00:00:00.208880  231.718033  0.007364   84   30      False     False
2016-08-26 00:00:01.215315  233.804504  0.007486   81   30      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-26 23:59:58.024840  330.056946  0.007354   84   40      False     False
2016-08-26 23:59:59.035586  329.158813  0.007397   84   40      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-26 00:00:00  0.224600  1.000076       0       0  254.0   225.0  201.0
2016-08-26 01:00:00  0.236435  1.000070       0       0  813.0   236.0  149.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-26 22:00:00  0.670432  0.999961       0       0  2316.0   671.0  168.0
2016-08-26 23:00:00  0.548472  0.971488       0       0  3832.0   565.0  262.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-26 00:00:00  0.224600  1.000076       0       0  254.0   225.0  201.0
2016-08-26 01:00:00  0.236435  1.000070       0       0  813.0   236.0  149.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-26 22:00:00  0.670432  0.999961       0       0  2316.0   671.0  168.0
2016-08-26 23:00:00  0.558108  0.999789       0       0  3832.0   558.0  262.0
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/TODAY.h5
WARNING: No hay summary

In [100]:
p = '/Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_15.h5'
p_st = os.path.join(cat.base_path, p)
print_secc('PATH: {}'.format(p_st))
df = pd.read_hdf(p_st, cat.key_raw)
df_bis, df_s = cat.process_data_summary(df)
try:
    df_s_saved = pd.read_hdf(p_st, cat.key_summary)
except KeyError:
    print_warn('No hay summary')
    df_s_saved = df_s
data_equal = (df == df_bis).all().all()
summary_equal = (df_s_saved == df_s).all().all()
if not summary_equal or not data_equal:
    print_err('DF == DF_BIS? {}; DF_S == DF_S_CALC? {}'.format(data_equal, summary_equal))
    print_blue('{}\n{}'.format(df.head(2), df.tail(2)))
    print_cyan('{}\n{}'.format(df_bis.head(2), df_bis.tail(2)))

    print_red('{}\n{}'.format(df_s_saved.head(2), df_s_saved.tail(2)))
    print_magenta('{}\n{}'.format(df_s.head(2), df_s.tail(2)))


 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_15.h5
ERROR: DF == DF_BIS? False; DF_S == DF_S_CALC? False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-15 00:00:00.485372  295.653412  0.007543   84   39       True      True
2016-08-15 00:00:01.485388  302.146240  0.007404   81   39       True      True
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-15 23:59:58.300572  249.893311  0.007402   84   35       True      True
2016-08-15 23:59:59.311180  248.625931  0.007340   84   35       True      True
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-15 00:00:00.485372  295.653412  0.007543   84   39      False     False
2016-08-15 00:00:01.485388  302.146240  0.007404   81   39      False     False
                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-15 23:59:58.300572  249.893311  0.007402   84   35      False     False
2016-08-15 23:59:59.311180  248.625931  0.007340   84   35      False     False
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-15 00:00:00  0.257087  0.999994       0       0  851.0   257.0  177.0
2016-08-15 01:00:00  0.231033  1.000025       0       0  267.0   231.0  202.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-15 22:00:00  0.403624  0.999916       1       1  1896.0   407.0  206.0
2016-08-15 23:00:00  0.184828  0.548637       0       0   399.0   337.0  302.0
                          kWh     t_ref  n_jump  n_exec  p_max  p_mean  p_min
ts                                                                           
2016-08-15 00:00:00  0.257087  0.999994       0       0  851.0   257.0  177.0
2016-08-15 01:00:00  0.231033  1.000025       0       0  267.0   231.0  202.0
                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-15 22:00:00  0.403624  0.999916       1       1  1896.0   407.0  206.0
2016-08-15 23:00:00  0.317224  0.999969       0       0   399.0   317.0  216.0

In [106]:
cols_fallo = []
for c in df:
    if not (df[c] == df_bis[c]).all():
        cols_fallo.append(c)
        
df[cols_fallo].plot(lw=1)
df_bis[cols_fallo].plot(lw=2)


Out[106]:
<matplotlib.axes._subplots.AxesSubplot at 0x11546cb38>

In [138]:
# Corrección de día 13, 14, 15 (raw + summary)
KWARGS_SAVE = dict(complevel=9, complib='blosc', fletcher32=True)
dias = [13, 14, 15]
for d in dias:
    p_st = '/Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_{}.h5'.format(d)
    print_secc('PATH: {}'.format(p_st))
    df = pd.read_hdf(p_st, cat.key_raw)
    df_bis, df_s = cat.process_data_summary(df)
    df_s_saved = pd.read_hdf(p_st, cat.key_summary)
    data_equal = (df == df_bis).all().all()
    summary_equal = (df_s_saved == df_s).all().all()
    if not summary_equal and not data_equal:
        print_err('DF == DF_BIS? {}; DF_S == DF_S_CALC? {}'.format(data_equal, summary_equal))
        print_red('{}\n{}'.format(df_s_saved.head(2), df_s_saved.tail(2)))
        print_magenta('{}\n{}'.format(df_s.head(2), df_s.tail(2)))
    df = pd.read_hdf(p_st, cat.key_raw)
    df_bis, df_s = cat.process_data_summary(df)
    df_s_saved = pd.read_hdf(p_st, cat.key_summary)
    #with pd.HDFStore(p_st, mode='w', **KWARGS_SAVE) as st:
    #    st.append(cat.key_raw, df_bis)
    #    st.append(cat.key_summary, df_s)
    #    print_ok(st)


 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_13.h5
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_14.h5
 ==> PATH: /Users/uge/ENERPIDATA/CURRENT_MONTH/DATA_2016_08_DAY_15.h5

In [140]:
data.index[-1].day != data.index[0].day
data.index[0].day, data.index[0].month


Out[140]:
(12, 8)

In [5]:
# Nuevos datos para test de archive day y month
raw = pd.read_hdf('/Users/uge/ENERPIDATA/enerpi_data.h5', 'rms')
new = cat.process_data(raw)
new.index += pd.Timedelta('4d 3h 47m')
print_info(new.head())
new.tail()


                                 power     noise  ref  ldr high_delta execution
ts                                                                             
2016-08-31 23:54:33.664052  393.281219  0.007545   83  585      False     False
2016-08-31 23:54:34.669293  396.561340  0.007572   82  585      False     False
2016-08-31 23:54:35.671929  387.727539  0.007508   83  584      False     False
2016-08-31 23:54:36.682851  380.000732  0.007520   84  584      False     False
2016-08-31 23:54:37.686677  394.193909  0.007589   83  585      False     False
Out[5]:
power noise ref ldr high_delta execution
ts
2016-09-01 00:02:32.089362 376.478394 0.007678 84 584 False False
2016-09-01 00:02:33.100947 381.355621 0.007586 84 584 False False
2016-09-01 00:02:34.103450 386.890167 0.007579 82 584 False False
2016-09-01 00:02:35.114879 392.543701 0.007645 84 583 False False
2016-09-01 00:02:36.125862 386.716797 0.007588 84 583 False False

In [1]:
from datacharm import *
from enerpi.api import enerpi_data_catalog
from enerpi.database import DATA_PATH, HDF_STORE

cat = enerpi_data_catalog(base_path=DATA_PATH, raw_file=HDF_STORE, check_integrity=False)
cat.tree.tail()


 ==> Librerías, clases y métodos cargados:
 +++ "dt"                           +++ "os" 
 +++ "json" v:2.0.9                 +++ "pd" (pandas) v:0.18.1
 +++ "locale"                       +++ "plt" 
 +++ "math"                         +++ "re" v:2.2.1
 +++ "np" (numpy) v:1.11.1          +++ "sns" (seaborn) v:0.7.0
 +++ "sys" 
 ** "Colormap", "Line2D", "Normalize", "OrderedDict", "PathPatch", "namedtuple", "time"
 ==> Pretty printing funcs:
print_blue, print_bold, print_boldu, print_cyan, print_err, print_green, print_grey, print_greyb, print_info, print_infob, print_magenta, print_ok, print_red, print_redb, print_secc, print_tree_dict, print_warn, print_white, print_yellow, print_yellowb, printcolor
If you are in a jupyter notebook, insert this:
%matplotlib inline
%config InlineBackend.figure_format='retina'
If you are working with GEO data, insert this:
import geopandas as gpd
import shapely.geometry as sg
import cartopy.crs as ccrs
Out[1]:
cols is_cat is_raw key n_rows st ts_fin ts_ini ts_st
26 [kWh, t_ref, n_jump, n_exec, p_max, p_mean, p_min] True False /hours 24 CURRENT_MONTH/DATA_2016_08_DAY_25.h5 2016-08-25 23:00:00.000000 2016-08-25 00:00:00.000000 2016-08-26 00:20:25.574072
27 [power, noise, ref, ldr, high_delta, execution] True True /rms 85786 CURRENT_MONTH/DATA_2016_08_DAY_25.h5 2016-08-25 23:59:59.198068 2016-08-25 00:00:00.192150 2016-08-26 00:20:25.574072
28 [kWh, t_ref, n_jump, n_exec, p_max, p_mean, p_min] True False /hours 24 CURRENT_MONTH/DATA_2016_08_DAY_26.h5 2016-08-26 23:00:00.000000 2016-08-26 00:00:00.000000 2016-08-27 00:58:47.220250
29 [power, noise, ref, ldr, high_delta, execution] True True /rms 85676 CURRENT_MONTH/DATA_2016_08_DAY_26.h5 2016-08-26 23:59:59.035586 2016-08-26 00:00:00.208880 2016-08-27 00:58:47.220250
0 [power, noise, ref, ldr, high_delta, execution] True True /rms 71899 CURRENT_MONTH/TODAY.h5 2016-08-27 20:07:32.653716 2016-08-27 00:00:00.046510 2016-08-27 20:07:33.736793

In [6]:
cat.update_catalog(data=new)

In [16]:
today = pd.read_hdf(os.path.join(DATA_PATH, 'DATA_YEAR_2016', 'DATA_2016_MONTH_08.h5'), 'rms')
print(today.index.is_unique)
today


True
Out[16]:
power noise ref ldr high_delta execution
ts
2016-08-12 10:46:25.990460 321.977661 0.006370 82 661 False False
2016-08-12 10:46:27.001776 321.467957 0.006482 84 660 False False
2016-08-12 10:46:28.001279 312.116974 0.006540 83 659 False False
2016-08-12 10:46:29.003281 306.766022 0.006651 83 658 False False
2016-08-12 10:46:30.013803 310.393005 0.006622 84 657 False False
2016-08-12 10:46:31.016723 304.283630 0.006469 82 657 False False
2016-08-12 10:46:32.021219 297.700317 0.006436 82 657 False False
2016-08-12 10:46:33.031873 300.129700 0.006473 84 657 False False
2016-08-12 10:46:34.042639 311.656708 0.006430 84 656 False False
2016-08-12 10:46:35.053546 316.205658 0.006423 84 656 False False
2016-08-12 10:46:36.064729 313.901764 0.006442 84 656 False False
2016-08-12 10:46:37.067504 307.243713 0.006557 82 656 False False
2016-08-12 10:46:38.077971 306.037811 0.006880 84 656 False False
2016-08-12 10:46:39.088600 312.869995 0.006805 84 656 False False
2016-08-12 10:46:40.099158 321.700439 0.006463 84 656 False False
2016-08-12 10:46:41.099861 316.040131 0.006301 83 656 False False
2016-08-12 10:46:42.110809 304.513336 0.006290 84 656 False False
2016-08-12 10:46:43.121590 312.958618 0.006405 84 656 False False
2016-08-12 10:46:44.132247 321.341064 0.006478 84 656 False False
2016-08-12 10:46:45.143206 326.292053 0.006441 84 656 False False
2016-08-12 10:46:46.153848 329.213257 0.006412 84 656 False False
2016-08-12 10:46:47.164335 332.171112 0.006415 84 656 False False
2016-08-12 10:46:48.174861 333.434723 0.006378 84 656 False False
2016-08-12 10:46:49.185529 330.683929 0.006380 84 656 False False
2016-08-12 10:46:50.196161 333.799042 0.006401 84 656 False False
2016-08-12 10:46:51.196584 338.351501 0.006644 83 656 False False
2016-08-12 10:46:52.200396 338.809479 0.006771 82 656 False False
2016-08-12 10:46:53.211065 331.273651 0.006760 84 656 False False
2016-08-12 10:46:54.221937 327.946960 0.006824 84 656 False False
2016-08-12 10:46:55.233263 326.401337 0.006742 84 656 False False
... ... ... ... ... ... ...
2016-08-31 23:59:30.622755 374.793823 0.007772 84 597 False False
2016-08-31 23:59:31.633500 373.446472 0.007800 84 597 False False
2016-08-31 23:59:32.644149 369.822266 0.007805 84 597 False False
2016-08-31 23:59:33.654820 370.853577 0.007849 84 597 False False
2016-08-31 23:59:34.666236 377.266754 0.007827 84 597 False False
2016-08-31 23:59:35.676780 376.181976 0.007862 84 597 False False
2016-08-31 23:59:36.687286 372.942200 0.007888 84 597 False False
2016-08-31 23:59:37.697864 374.799683 0.007816 84 597 False False
2016-08-31 23:59:38.708600 375.795258 0.007798 84 597 False False
2016-08-31 23:59:39.719295 380.122925 0.007825 84 597 False False
2016-08-31 23:59:40.730579 381.569092 0.007839 84 598 False False
2016-08-31 23:59:41.741129 380.593048 0.007806 84 598 False False
2016-08-31 23:59:42.751688 383.200836 0.007798 84 598 False False
2016-08-31 23:59:43.762282 386.808960 0.007772 84 598 False False
2016-08-31 23:59:44.772999 389.983307 0.007706 84 598 False False
2016-08-31 23:59:45.783696 390.200165 0.007698 84 598 False False
2016-08-31 23:59:46.794918 378.448395 0.007724 84 597 False False
2016-08-31 23:59:47.805974 371.328857 0.007707 84 597 False False
2016-08-31 23:59:48.811214 378.695526 0.007733 82 597 False False
2016-08-31 23:59:49.821825 377.394257 0.007730 84 598 False False
2016-08-31 23:59:50.833307 382.176178 0.007851 84 598 False False
2016-08-31 23:59:51.844126 393.469757 0.007925 84 597 False False
2016-08-31 23:59:52.845082 392.971039 0.007906 83 597 False False
2016-08-31 23:59:53.848609 380.367920 0.007792 82 597 False False
2016-08-31 23:59:54.848773 361.069092 0.007725 83 597 False False
2016-08-31 23:59:55.859503 366.136841 0.007903 84 597 False False
2016-08-31 23:59:56.860029 379.514038 0.007914 83 597 False False
2016-08-31 23:59:57.870652 384.511139 0.007881 84 597 False False
2016-08-31 23:59:58.871599 381.054688 0.007815 83 597 False False
2016-08-31 23:59:59.882149 374.924103 0.007790 84 597 False False

1293744 rows × 6 columns


In [9]:
new


Out[9]:
power noise ref ldr high_delta execution
ts
2016-08-27 23:35:15.468270 337.033020 0.007548 72 634 False False
2016-08-27 23:35:16.474974 355.264282 0.007300 77 634 False False
2016-08-27 23:35:17.482896 370.732056 0.007188 82 634 False False
2016-08-27 23:35:18.490626 360.768738 0.007420 82 633 False False
2016-08-27 23:35:19.497099 337.699890 0.007577 83 633 False False
2016-08-27 23:35:20.507528 330.467163 0.007592 84 634 False False
2016-08-27 23:35:21.518893 330.257599 0.007629 84 634 False False
2016-08-27 23:35:22.529447 329.213440 0.007606 84 634 False False
2016-08-27 23:35:23.540428 323.496643 0.007584 84 634 False False
2016-08-27 23:35:24.551261 322.625275 0.007582 84 634 False False
2016-08-27 23:35:25.550842 332.130676 0.007546 83 634 False False
2016-08-27 23:35:26.552601 327.286285 0.007484 83 634 False False
2016-08-27 23:35:27.563570 315.116943 0.007414 84 634 False False
2016-08-27 23:35:28.574056 321.135895 0.007528 84 634 False False
2016-08-27 23:35:29.584971 333.193481 0.007618 84 634 False False
2016-08-27 23:35:30.595603 329.595123 0.007683 84 634 False False
2016-08-27 23:35:31.606949 334.027161 0.007685 84 634 False False
2016-08-27 23:35:32.617634 341.920593 0.007508 84 634 False False
2016-08-27 23:35:33.628239 336.472046 0.007517 84 634 False False
2016-08-27 23:35:34.638764 333.742615 0.007587 84 634 False False
2016-08-27 23:35:35.649990 330.713440 0.007537 84 634 False False
2016-08-27 23:35:36.660571 327.242615 0.007620 84 634 False False
2016-08-27 23:35:37.671846 333.102173 0.007739 84 634 False False
2016-08-27 23:35:38.682484 332.839508 0.007719 84 634 False False
2016-08-27 23:35:39.682330 334.445282 0.007664 83 634 False False
2016-08-27 23:35:40.693153 345.222290 0.007585 84 634 False False
2016-08-27 23:35:41.693806 339.392639 0.007543 83 634 False False
2016-08-27 23:35:42.704355 334.808716 0.007494 84 634 False False
2016-08-27 23:35:43.714119 332.394806 0.007475 83 634 False False
2016-08-27 23:35:44.723598 332.938232 0.007514 83 634 False False
... ... ... ... ... ... ...
2016-08-28 00:14:03.419874 238.646545 0.007671 84 647 False False
2016-08-28 00:14:04.419902 247.200211 0.007679 83 647 False False
2016-08-28 00:14:05.420334 249.816742 0.007657 83 647 False False
2016-08-28 00:14:06.431332 246.592102 0.007686 84 647 False False
2016-08-28 00:14:07.444138 235.673264 0.007710 84 646 False False
2016-08-28 00:14:08.454035 240.547318 0.007753 84 646 False False
2016-08-28 00:14:09.465378 240.448456 0.007720 84 646 False False
2016-08-28 00:14:10.465589 238.590332 0.007692 83 646 False False
2016-08-28 00:14:11.465912 234.369064 0.007669 83 646 False False
2016-08-28 00:14:12.476825 231.152496 0.007655 84 646 False False
2016-08-28 00:14:13.489313 239.803665 0.007715 84 646 False False
2016-08-28 00:14:14.499172 248.437485 0.007762 84 647 False False
2016-08-28 00:14:15.510327 244.503357 0.007719 84 647 False False
2016-08-28 00:14:16.510612 233.461639 0.007664 83 647 False False
2016-08-28 00:14:17.510864 228.584412 0.007658 83 647 False False
2016-08-28 00:14:18.521585 231.856964 0.007646 84 647 False False
2016-08-28 00:14:19.534651 238.529037 0.007650 84 646 False False
2016-08-28 00:14:20.544066 236.182800 0.007648 84 646 False False
2016-08-28 00:14:21.555111 238.830246 0.007683 84 646 False False
2016-08-28 00:14:22.556162 238.661209 0.007642 83 646 False False
2016-08-28 00:14:23.565377 233.412399 0.007612 83 646 False False
2016-08-28 00:14:24.570553 241.319809 0.007771 82 646 False False
2016-08-28 00:14:25.570777 248.366135 0.007795 83 647 False False
2016-08-28 00:14:26.580684 235.197891 0.007712 84 646 False False
2016-08-28 00:14:27.591587 234.580276 0.007675 84 646 False False
2016-08-28 00:14:28.591622 244.284027 0.007608 83 646 False False
2016-08-28 00:14:29.598794 233.266876 0.007647 82 646 False False
2016-08-28 00:14:30.598384 233.095139 0.007686 83 646 False False
2016-08-28 00:14:31.610458 240.176514 0.007654 84 646 False False
2016-08-28 00:14:32.620609 235.768311 0.007692 84 647 False False

2340 rows × 6 columns


In [116]:
ax = (data.execution[data.execution] * 1.5).plot(lw=0, markersize=10, marker='o', color='violet', alpha=.8, figsize=(18, 5))
ax = data.high_delta[data.high_delta & ~data.execution].plot(ax=ax, lw=0, markersize=10, marker='d', color='red')
ax.set_ylim((.5, 2));
ax.set_xlim((data.index[0], data.index[-1]));



In [120]:
data[data.high_delta | data.execution].loc['2016-08-26 13:50':'2016-08-26 14:00'].tail()


Out[120]:
power noise ref ldr high_delta execution
ts
2016-08-26 13:53:23.926140 284.637787 0.007732 51 535 True True
2016-08-26 13:53:33.619795 328.295929 0.007438 62 531 True False

In [134]:
#data.ref.hist(bins=100)

#data.ref[data.ref < 81].resample('1s').mean().fillna(0).plot(figsize=(18, 8))

#len(data.ref[data.ref < 81].resample('5s').min())
data.ref[data.ref < 81].resample('5s').min().plot(figsize=(18, 8))


Out[134]:
<matplotlib.axes._subplots.AxesSubplot at 0x125618cc0>

In [21]:
diferencia = data_s_bis.index.difference(data_s.index)
print_red(diferencia)
data_s_bis.loc[diferencia]


DatetimeIndex(['2016-08-16 23:00:00'], dtype='datetime64[ns]', name='ts', freq=None)
Out[21]:
kWh t_ref n_jump n_exec p_max p_mean p_min
ts
2016-08-16 23:00:00 0.0 NaN 0 0 NaN NaN NaN

In [29]:
print_red(data_s[~(data_s_bis.drop(diferencia) == data_s).all(axis=1)])
data_s_bis.drop(diferencia)[~(data_s_bis.drop(diferencia) == data_s).all(axis=1)]


                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-13 00:00:00  0.273163  1.000047       0       0   814.0   273.0  201.0
2016-08-13 23:00:00  0.120417  0.354864       0       0   401.0   339.0  291.0
2016-08-14 00:00:00  0.251059  1.000275       0       0   808.0   251.0  212.0
2016-08-14 23:00:00  0.199606  0.576791       0       0   458.0   346.0  304.0
2016-08-15 00:00:00  0.257087  0.999994       0       0   851.0   257.0  177.0
2016-08-15 23:00:00  0.184828  0.548637       0       0   399.0   337.0  302.0
2016-08-16 00:00:00  0.235938  0.999976       0       0   279.0   236.0  211.0
2016-08-16 21:00:00  0.202495  0.517834       0       0   461.0   391.0  288.0
2016-08-17 00:00:00  0.150972  0.646398       0       0   274.0   234.0  208.0
2016-08-17 23:00:00  0.347437  0.967882       0       0  2006.0   359.0  201.0
2016-08-18 00:00:00  0.290345  1.000075       0       0   820.0   290.0  168.0
2016-08-18 23:00:00  0.301713  0.897652       0       0   882.0   336.0  245.0
2016-08-19 00:00:00  0.251378  0.999786       2       2   281.0   252.0  233.0
2016-08-19 23:00:00  0.143804  0.372659       0       0   515.0   386.0  277.0
2016-08-20 00:00:00  0.327746  1.000015       0       0   590.0   328.0  192.0
2016-08-20 23:00:00  0.145678  0.522620       0       0   849.0   279.0  209.0
2016-08-21 00:00:00  0.238063  0.999911       0       0   787.0   238.0  200.0
2016-08-21 23:00:00  0.198115  0.689859       0       0   390.0   287.0  218.0
2016-08-22 23:00:00  0.032893  0.089656       0       0   425.0   367.0  321.0
2016-08-23 00:00:00  0.286856  1.000055       0       0   810.0   287.0  242.0
Out[29]:
kWh t_ref n_jump n_exec p_max p_mean p_min
ts
2016-08-13 00:00:00 0.273163 1.000049 0 0 814.0 273.0 201.0
2016-08-13 23:00:00 0.320116 0.999967 0 0 402.0 320.0 236.0
2016-08-14 00:00:00 0.251060 1.000278 0 0 808.0 251.0 212.0
2016-08-14 23:00:00 0.328059 0.999930 0 0 458.0 328.0 279.0
2016-08-15 00:00:00 0.257088 0.999997 0 0 851.0 257.0 177.0
2016-08-15 23:00:00 0.317224 0.999969 0 0 399.0 317.0 216.0
2016-08-16 00:00:00 0.235938 0.999976 0 0 279.0 236.0 211.0
2016-08-16 21:00:00 0.367758 0.999906 0 0 1027.0 368.0 252.0
2016-08-17 00:00:00 0.666060 2.960765 1 1 274.0 234.0 208.0
2016-08-17 23:00:00 0.358426 1.000040 0 0 2006.0 358.0 201.0
2016-08-18 00:00:00 0.290345 1.000076 0 0 820.0 290.0 168.0
2016-08-18 23:00:00 0.328388 1.000172 0 0 882.0 328.0 245.0
2016-08-19 00:00:00 0.251379 0.999790 2 2 281.0 252.0 233.0
2016-08-19 23:00:00 0.405113 1.000002 0 0 607.0 405.0 277.0
2016-08-20 00:00:00 0.327747 1.000016 0 0 590.0 328.0 192.0
2016-08-20 23:00:00 0.257742 0.999990 0 0 849.0 258.0 199.0
2016-08-21 00:00:00 0.238063 0.999913 0 0 787.0 238.0 200.0
2016-08-21 23:00:00 0.269552 1.000070 0 0 390.0 270.0 218.0
2016-08-22 23:00:00 0.353989 1.000060 0 0 425.0 354.0 312.0
2016-08-23 00:00:00 0.286855 1.000054 0 0 810.0 287.0 242.0

In [24]:
print(data_s_bis.loc['2016-08-16 14:00:00':'2016-08-17 3:00:00'])
data_s.loc['2016-08-16 14:00:00':'2016-08-17 3:00:00']


                          kWh     t_ref  n_jump  n_exec   p_max  p_mean  p_min
ts                                                                            
2016-08-16 14:00:00  1.088713  0.999967       0       0  4090.0  1089.0  248.0
2016-08-16 15:00:00  0.393378  0.999948       0       0   443.0   393.0  328.0
2016-08-16 16:00:00  0.339787  1.000189       0       0   439.0   340.0  247.0
2016-08-16 17:00:00  0.369336  0.999785       0       0   449.0   369.0  323.0
2016-08-16 18:00:00  0.398480  0.999997       0       0   914.0   398.0  335.0
2016-08-16 19:00:00  0.399873  1.000199       1       1   936.0   399.0  259.0
2016-08-16 20:00:00  0.428319  0.999909       0       0   942.0   428.0  326.0
2016-08-16 21:00:00  0.367758  0.999906       0       0  1027.0   368.0  252.0
2016-08-16 22:00:00  0.060506  0.039242       0       0  2332.0  1542.0  270.0
2016-08-16 23:00:00  0.000000       NaN       0       0     NaN     NaN    NaN
2016-08-17 00:00:00  0.666060  2.960765       1       1   274.0   234.0  208.0
2016-08-17 01:00:00  0.246444  1.000204       0       0   831.0   246.0  211.0
2016-08-17 02:00:00  0.238876  0.999975       0       0   281.0   239.0  214.0
2016-08-17 03:00:00  0.247852  0.999804       0       0   795.0   248.0  213.0
Out[24]:
kWh t_ref n_jump n_exec p_max p_mean p_min
ts
2016-08-16 14:00:00 1.088713 0.999967 0 0 4090.0 1089.0 248.0
2016-08-16 15:00:00 0.393378 0.999948 0 0 443.0 393.0 328.0
2016-08-16 16:00:00 0.339787 1.000189 0 0 439.0 340.0 247.0
2016-08-16 17:00:00 0.369336 0.999785 0 0 449.0 369.0 323.0
2016-08-16 18:00:00 0.398480 0.999997 0 0 914.0 398.0 335.0
2016-08-16 19:00:00 0.399873 1.000199 1 1 936.0 399.0 259.0
2016-08-16 20:00:00 0.428319 0.999909 0 0 942.0 428.0 326.0
2016-08-16 21:00:00 0.202495 0.517834 0 0 461.0 391.0 288.0
2016-08-16 22:00:00 0.060506 0.039242 0 0 2332.0 1542.0 270.0
2016-08-17 00:00:00 0.150972 0.646398 0 0 274.0 234.0 208.0
2016-08-17 01:00:00 0.246444 1.000204 0 0 831.0 246.0 211.0
2016-08-17 02:00:00 0.238876 0.999975 0 0 281.0 239.0 214.0
2016-08-17 03:00:00 0.247852 0.999804 0 0 795.0 248.0 213.0

In [41]:
hora = df.loc['2016-08-22 23:00:00':'2016-08-23 00:00:00'].copy()
hora.ix[1:, 'delta'] = (hora.index.values[1:] - hora.index.values[:-1])
hora.delta = hora.delta.fillna(method='bfill')
hora['kWh'] = hora.power * hora.delta.dt.total_seconds() / (3600 * 1000.)
print_ok(hora.sum())
hora.tail()


power                    1.26436e+06
noise                        27.2499
ref                           298201
ldr                           129525
high_delta                     False
execution                      False
delta         0 days 01:00:01.228615
kWh                         0.354085
dtype: object
Out[41]:
power noise ref ldr high_delta execution delta kWh
ts
2016-08-22 23:59:56.749874 340.150360 0.007564 84 36 False False 00:00:01.010684 0.000095
2016-08-22 23:59:57.760679 341.538544 0.007561 84 36 False False 00:00:01.010805 0.000096
2016-08-22 23:59:58.771425 338.310730 0.007478 84 36 False False 00:00:01.010746 0.000095
2016-08-22 23:59:59.782355 340.466675 0.007396 84 36 False False 00:00:01.010930 0.000096
2016-08-23 00:00:00.788150 343.017334 0.007433 83 37 False False 00:00:01.005795 0.000096

In [20]:
import glob


def explore_stores(path, ext='.h5'):
    for f in sorted(filter(lambda f: f.endswith(ext), glob.glob(path + '/**', recursive=True))):
        print_magenta(os.path.basename(f))
        with pd.HDFStore(f, 'r') as st:
            df = st['/rms'].sort_index()
            print_info('* FROM {:%d-%m-%y %H:%M} TO {:%d-%m-%y %H:%M} [{}, unique={}, hay horas={}]'
                       .format(df.index[0], df.index[-1], len(df), df.index.is_unique, '/hours' in st.keys()))
    
    
explore_stores('/Users/uge/Dropbox/PYTHON/PYPROJECTS/respaldo_enerpi_rpi3/ENERPIDATA_bkp/', ext='.h5')


DATA_2016_09_DAY_01.h5
* FROM 01-09-16 00:00 TO 01-09-16 23:59 [85705, unique=True, hay horas=True]
TODAY.h5
* FROM 02-09-16 00:00 TO 02-09-16 10:25 [211794, unique=False, hay horas=False]
DATA_2016_MONTH_08.h5
* FROM 31-08-16 23:08 TO 31-08-16 23:59 [3041, unique=True, hay horas=True]
DATA_2016_08_DAY_12.h5
* FROM 12-08-16 10:46 TO 12-08-16 23:59 [47122, unique=True, hay horas=True]
DATA_2016_08_DAY_13.h5
* FROM 13-08-16 00:00 TO 13-08-16 23:59 [81159, unique=True, hay horas=True]
DATA_2016_08_DAY_14.h5
* FROM 14-08-16 00:00 TO 14-08-16 23:59 [85608, unique=True, hay horas=True]
DATA_2016_08_DAY_15.h5
* FROM 15-08-16 00:00 TO 15-08-16 23:59 [85541, unique=True, hay horas=True]
DATA_2016_08_DAY_16.h5
* FROM 16-08-16 00:00 TO 16-08-16 22:02 [77470, unique=True, hay horas=True]
DATA_2016_08_DAY_17.h5
* FROM 17-08-16 00:21 TO 17-08-16 23:59 [79375, unique=True, hay horas=True]
DATA_2016_08_DAY_18.h5
* FROM 18-08-16 00:00 TO 18-08-16 23:59 [83951, unique=True, hay horas=True]
DATA_2016_08_DAY_19.h5
* FROM 19-08-16 00:00 TO 19-08-16 23:59 [84318, unique=True, hay horas=True]
DATA_2016_08_DAY_20.h5
* FROM 20-08-16 00:00 TO 20-08-16 23:59 [85864, unique=True, hay horas=True]
DATA_2016_08_DAY_21.h5
* FROM 21-08-16 00:00 TO 21-08-16 23:59 [85799, unique=True, hay horas=True]
DATA_2016_08_DAY_22.h5
* FROM 22-08-16 00:00 TO 22-08-16 23:59 [85604, unique=True, hay horas=True]
DATA_2016_08_DAY_23.h5
* FROM 23-08-16 00:00 TO 23-08-16 23:59 [85016, unique=True, hay horas=True]
DATA_2016_08_DAY_24.h5
* FROM 24-08-16 00:00 TO 24-08-16 23:59 [85792, unique=True, hay horas=True]
DATA_2016_08_DAY_25.h5
* FROM 25-08-16 00:00 TO 25-08-16 23:59 [85786, unique=True, hay horas=True]
DATA_2016_08_DAY_26.h5
* FROM 26-08-16 00:00 TO 26-08-16 23:59 [85676, unique=True, hay horas=True]
DATA_2016_08_DAY_27.h5
* FROM 27-08-16 00:00 TO 27-08-16 23:59 [85728, unique=True, hay horas=True]
DATA_2016_08_DAY_28.h5
* FROM 28-08-16 00:00 TO 28-08-16 23:59 [85744, unique=True, hay horas=True]
DATA_2016_08_DAY_29.h5
* FROM 29-08-16 00:00 TO 29-08-16 23:59 [85742, unique=True, hay horas=True]
DATA_2016_08_DAY_30.h5
* FROM 30-08-16 00:00 TO 30-08-16 23:59 [85743, unique=True, hay horas=True]
DATA_2016_09_DAY_01.h5
* FROM 01-09-16 00:00 TO 01-09-16 23:59 [171410, unique=False, hay horas=True]
TODAY.h5
* FROM 26-08-16 00:00 TO 26-08-16 23:58 [85575, unique=True, hay horas=False]
TODAY.h5
* FROM 15-08-16 00:00 TO 15-08-16 23:32 [83931, unique=True, hay horas=False]
enerpi_data.h5
* FROM 16-08-16 18:43 TO 16-08-16 19:10 [1620, unique=True, hay horas=False]
temp_data.h5
* FROM 12-08-16 10:46 TO 13-08-16 21:01 [122200, unique=True, hay horas=False]
enerpi_data.h5
* FROM 31-08-16 23:08 TO 02-09-16 11:09 [128580, unique=True, hay horas=False]
temp_debug_day_28.h5
* FROM 27-08-16 00:00 TO 28-08-16 00:25 [87259, unique=True, hay horas=False]
temp_debug_day_29.h5
* FROM 28-08-16 00:00 TO 29-08-16 00:36 [87931, unique=True, hay horas=False]
temp_debug_day_30.h5
* FROM 29-08-16 00:00 TO 30-08-16 00:47 [88587, unique=True, hay horas=False]
temp_debug_day_31.h5
* FROM 30-08-16 00:00 TO 31-08-16 00:58 [89245, unique=True, hay horas=False]
temp_debug_month.h5
* FROM 31-08-16 23:08 TO 02-09-16 10:25 [300540, unique=False, hay horas=False]

In [21]:
month = pd.read_hdf('/Users/uge/bkp/ENERPIDATA/temp_debug_month.h5', 'rms')

In [22]:
month


Out[22]:
power noise ref ldr high_delta execution
ts
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:00.977816 211.460403 0.007816 84 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
2016-09-01 00:00:01.989375 208.400986 0.007800 83 30 False False
... ... ... ... ... ... ...
2016-09-01 16:16:50.793146 222.700821 0.007742 84 443 False False
2016-09-01 16:16:51.792756 226.557755 0.007783 83 443 False False
2016-09-01 16:16:52.804107 231.706558 0.007827 84 443 False False
2016-09-01 16:16:53.814555 227.632858 0.007802 84 442 False False
2016-09-01 16:16:54.825867 229.364136 0.007750 84 442 False False
2016-09-01 16:16:55.836469 232.315567 0.007727 84 442 False False
2016-09-01 16:16:56.847382 230.744278 0.007724 84 442 False False
2016-09-01 16:16:57.849441 233.044281 0.007740 83 442 False False
2016-09-01 16:16:58.860756 228.071198 0.007710 84 442 False False
2016-09-01 16:16:59.871530 225.041306 0.007668 84 442 False False
2016-09-01 16:17:00.876608 227.608383 0.007745 83 441 False False
2016-09-01 16:17:01.887626 223.846512 0.007785 84 441 False False
2016-09-01 16:17:02.888214 217.881134 0.007721 83 442 False False
2016-09-01 16:17:03.892986 215.172043 0.007718 82 443 False False
2016-09-01 16:17:04.894237 226.036423 0.007841 83 443 False False
2016-09-01 16:17:05.904881 233.391693 0.007827 84 443 False False
2016-09-01 16:17:06.905691 225.129013 0.007666 83 443 False False
2016-09-01 16:17:07.916365 224.097351 0.007676 84 443 False False
2016-09-01 16:17:08.921856 227.949295 0.007716 82 442 False False
2016-09-01 16:17:09.924690 233.315643 0.007597 83 441 False False
2016-09-01 16:17:10.936090 236.166275 0.007578 84 441 False False
2016-09-01 16:17:11.946653 225.116470 0.007706 84 442 False False
2016-09-01 16:17:12.946368 228.436111 0.007776 83 444 False False
2016-09-01 16:17:13.957039 231.347305 0.007764 84 443 False False
2016-09-01 16:17:14.968015 224.584564 0.007719 84 442 False False
2016-09-01 16:17:15.979548 218.520264 0.007708 84 443 False False
2016-09-01 16:17:16.979062 225.110718 0.007744 83 445 False False
2016-09-01 16:17:17.989711 234.345718 0.007801 84 444 False False
2016-09-01 16:17:18.989360 233.866516 0.007783 83 442 False False
2016-09-01 16:17:19.999909 231.158295 0.007726 84 442 False False

502144 rows × 6 columns


In [9]:
import pandas as pd
from prettyprinting import *


raw = pd.read_hdf('/Users/uge/Dropbox/PYTHON/PYPROJECTS/respaldo_enerpi_rpi3/ENERPIDATA/temp_debug_month.h5', 'rms')
print_red('{}, unique={}'.format(raw.shape, raw.index.is_unique))

df = raw.sort_index().copy() #.drop_duplicates()
print_info('{}, unique={}'.format(df.shape, df.index.is_unique))
df


(1695618, 6), unique=True
(1695618, 6), unique=True
Out[9]:
power noise ref ldr high_delta execution
ts
2016-08-12 10:46:25.990460 321.977661 0.006370 82 661 False False
2016-08-12 10:46:27.001776 321.467957 0.006482 84 660 False False
2016-08-12 10:46:28.001279 312.116974 0.006540 83 659 False False
2016-08-12 10:46:29.003281 306.766022 0.006651 83 658 False False
2016-08-12 10:46:30.013803 310.393005 0.006622 84 657 False False
2016-08-12 10:46:31.016723 304.283630 0.006469 82 657 False False
2016-08-12 10:46:32.021219 297.700317 0.006436 82 657 False False
2016-08-12 10:46:33.031873 300.129700 0.006473 84 657 False False
2016-08-12 10:46:34.042639 311.656708 0.006430 84 656 False False
2016-08-12 10:46:35.053546 316.205658 0.006423 84 656 False False
2016-08-12 10:46:36.064729 313.901764 0.006442 84 656 False False
2016-08-12 10:46:37.067504 307.243713 0.006557 82 656 False False
2016-08-12 10:46:38.077971 306.037811 0.006880 84 656 False False
2016-08-12 10:46:39.088600 312.869995 0.006805 84 656 False False
2016-08-12 10:46:40.099158 321.700439 0.006463 84 656 False False
2016-08-12 10:46:41.099861 316.040131 0.006301 83 656 False False
2016-08-12 10:46:42.110809 304.513336 0.006290 84 656 False False
2016-08-12 10:46:43.121590 312.958618 0.006405 84 656 False False
2016-08-12 10:46:44.132247 321.341064 0.006478 84 656 False False
2016-08-12 10:46:45.143206 326.292053 0.006441 84 656 False False
2016-08-12 10:46:46.153848 329.213257 0.006412 84 656 False False
2016-08-12 10:46:47.164335 332.171112 0.006415 84 656 False False
2016-08-12 10:46:48.174861 333.434723 0.006378 84 656 False False
2016-08-12 10:46:49.185529 330.683929 0.006380 84 656 False False
2016-08-12 10:46:50.196161 333.799042 0.006401 84 656 False False
2016-08-12 10:46:51.196584 338.351501 0.006644 83 656 False False
2016-08-12 10:46:52.200396 338.809479 0.006771 82 656 False False
2016-08-12 10:46:53.211065 331.273651 0.006760 84 656 False False
2016-08-12 10:46:54.221937 327.946960 0.006824 84 656 False False
2016-08-12 10:46:55.233263 326.401337 0.006742 84 656 False False
... ... ... ... ... ... ...
2016-09-02 11:08:32.771709 411.560303 0.007601 84 703 False False
2016-09-02 11:08:33.771541 402.537750 0.007616 83 703 False False
2016-09-02 11:08:34.772014 406.602509 0.007556 83 703 False False
2016-09-02 11:08:35.771647 410.026031 0.007590 83 703 False False
2016-09-02 11:08:36.777146 410.596680 0.007672 83 703 False False
2016-09-02 11:08:37.787681 415.209167 0.007754 84 703 False False
2016-09-02 11:08:38.794084 407.709106 0.007698 82 703 False False
2016-09-02 11:08:39.794150 411.985291 0.007622 83 703 False False
2016-09-02 11:08:40.795653 406.503876 0.007655 83 703 False False
2016-09-02 11:08:41.806133 399.287292 0.007613 84 703 False False
2016-09-02 11:08:42.817244 408.031372 0.007585 84 703 False False
2016-09-02 11:08:43.827766 413.250946 0.007603 84 703 False False
2016-09-02 11:08:44.833343 408.474792 0.007636 82 703 False False
2016-09-02 11:08:45.835338 420.295654 0.007518 83 703 False False
2016-09-02 11:08:46.846692 424.539520 0.007542 84 704 False False
2016-09-02 11:08:47.855838 413.355042 0.007693 83 704 False False
2016-09-02 11:08:48.856656 405.995544 0.007743 83 704 False False
2016-09-02 11:08:49.867682 396.356628 0.007769 84 704 False False
2016-09-02 11:08:50.868236 398.368683 0.007725 83 704 False False
2016-09-02 11:08:51.879183 412.175232 0.007731 84 704 False False
2016-09-02 11:08:52.880329 415.708893 0.007782 83 704 False False
2016-09-02 11:08:53.890840 405.513153 0.007725 84 704 False False
2016-09-02 11:08:54.895225 397.462738 0.007632 83 704 False False
2016-09-02 11:08:55.905971 402.696930 0.007600 84 704 False False
2016-09-02 11:08:56.917144 410.328583 0.007561 84 704 False False
2016-09-02 11:08:57.928424 404.359070 0.007559 84 703 False False
2016-09-02 11:08:58.934235 404.382263 0.007571 82 703 False False
2016-09-02 11:08:59.937040 395.105591 0.007586 83 703 False False
2016-09-02 11:09:00.940282 400.866211 0.007689 83 703 False False
2016-09-02 11:09:01.951393 409.940491 0.007763 84 703 False False

1695618 rows × 6 columns


In [4]:
df = df.groupby(level=0).first()
df


Out[4]:
power noise ref ldr high_delta execution
ts
2016-08-12 10:46:25.990460 321.977661 0.006370 82 661 False False
2016-08-12 10:46:27.001776 321.467957 0.006482 84 660 False False
2016-08-12 10:46:28.001279 312.116974 0.006540 83 659 False False
2016-08-12 10:46:29.003281 306.766022 0.006651 83 658 False False
2016-08-12 10:46:30.013803 310.393005 0.006622 84 657 False False
2016-08-12 10:46:31.016723 304.283630 0.006469 82 657 False False
2016-08-12 10:46:32.021219 297.700317 0.006436 82 657 False False
2016-08-12 10:46:33.031873 300.129700 0.006473 84 657 False False
2016-08-12 10:46:34.042639 311.656708 0.006430 84 656 False False
2016-08-12 10:46:35.053546 316.205658 0.006423 84 656 False False
2016-08-12 10:46:36.064729 313.901764 0.006442 84 656 False False
2016-08-12 10:46:37.067504 307.243713 0.006557 82 656 False False
2016-08-12 10:46:38.077971 306.037811 0.006880 84 656 False False
2016-08-12 10:46:39.088600 312.869995 0.006805 84 656 False False
2016-08-12 10:46:40.099158 321.700439 0.006463 84 656 False False
2016-08-12 10:46:41.099861 316.040131 0.006301 83 656 False False
2016-08-12 10:46:42.110809 304.513336 0.006290 84 656 False False
2016-08-12 10:46:43.121590 312.958618 0.006405 84 656 False False
2016-08-12 10:46:44.132247 321.341064 0.006478 84 656 False False
2016-08-12 10:46:45.143206 326.292053 0.006441 84 656 False False
2016-08-12 10:46:46.153848 329.213257 0.006412 84 656 False False
2016-08-12 10:46:47.164335 332.171112 0.006415 84 656 False False
2016-08-12 10:46:48.174861 333.434723 0.006378 84 656 False False
2016-08-12 10:46:49.185529 330.683929 0.006380 84 656 False False
2016-08-12 10:46:50.196161 333.799042 0.006401 84 656 False False
2016-08-12 10:46:51.196584 338.351501 0.006644 83 656 False False
2016-08-12 10:46:52.200396 338.809479 0.006771 82 656 False False
2016-08-12 10:46:53.211065 331.273651 0.006760 84 656 False False
2016-08-12 10:46:54.221937 327.946960 0.006824 84 656 False False
2016-08-12 10:46:55.233263 326.401337 0.006742 84 656 False False
... ... ... ... ... ... ...
2016-09-02 11:08:32.771709 411.560303 0.007601 84 703 False False
2016-09-02 11:08:33.771541 402.537750 0.007616 83 703 False False
2016-09-02 11:08:34.772014 406.602509 0.007556 83 703 False False
2016-09-02 11:08:35.771647 410.026031 0.007590 83 703 False False
2016-09-02 11:08:36.777146 410.596680 0.007672 83 703 False False
2016-09-02 11:08:37.787681 415.209167 0.007754 84 703 False False
2016-09-02 11:08:38.794084 407.709106 0.007698 82 703 False False
2016-09-02 11:08:39.794150 411.985291 0.007622 83 703 False False
2016-09-02 11:08:40.795653 406.503876 0.007655 83 703 False False
2016-09-02 11:08:41.806133 399.287292 0.007613 84 703 False False
2016-09-02 11:08:42.817244 408.031372 0.007585 84 703 False False
2016-09-02 11:08:43.827766 413.250946 0.007603 84 703 False False
2016-09-02 11:08:44.833343 408.474792 0.007636 82 703 False False
2016-09-02 11:08:45.835338 420.295654 0.007518 83 703 False False
2016-09-02 11:08:46.846692 424.539520 0.007542 84 704 False False
2016-09-02 11:08:47.855838 413.355042 0.007693 83 704 False False
2016-09-02 11:08:48.856656 405.995544 0.007743 83 704 False False
2016-09-02 11:08:49.867682 396.356628 0.007769 84 704 False False
2016-09-02 11:08:50.868236 398.368683 0.007725 83 704 False False
2016-09-02 11:08:51.879183 412.175232 0.007731 84 704 False False
2016-09-02 11:08:52.880329 415.708893 0.007782 83 704 False False
2016-09-02 11:08:53.890840 405.513153 0.007725 84 704 False False
2016-09-02 11:08:54.895225 397.462738 0.007632 83 704 False False
2016-09-02 11:08:55.905971 402.696930 0.007600 84 704 False False
2016-09-02 11:08:56.917144 410.328583 0.007561 84 704 False False
2016-09-02 11:08:57.928424 404.359070 0.007559 84 703 False False
2016-09-02 11:08:58.934235 404.382263 0.007571 82 703 False False
2016-09-02 11:08:59.937040 395.105591 0.007586 83 703 False False
2016-09-02 11:09:00.940282 400.866211 0.007689 83 703 False False
2016-09-02 11:09:01.951393 409.940491 0.007763 84 703 False False

1695618 rows × 6 columns


In [10]:
%config InlineBackend.figure_format='retina'
from datacharm import *
%matplotlib inline

df.resample('5min').power.mean().fillna(0).plot(figsize=(18, 8))
plt.show()


---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-10-642c81663c11> in <module>()
      3 get_ipython().magic('matplotlib inline')
      4 
----> 5 df.resample('5min').power.mean().fillna(0).plot(figsize=(18, 8))
      6 plt.show()

/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/pandas/tools/plotting.py in __call__(self, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)
   3564                            colormap=colormap, table=table, yerr=yerr,
   3565                            xerr=xerr, label=label, secondary_y=secondary_y,
-> 3566                            **kwds)
   3567     __call__.__doc__ = plot_series.__doc__
   3568 

/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/pandas/tools/plotting.py in plot_series(data, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)
   2643                  yerr=yerr, xerr=xerr,
   2644                  label=label, secondary_y=secondary_y,
-> 2645                  **kwds)
   2646 
   2647 

/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/pandas/tools/plotting.py in _plot(data, x, y, subplots, ax, kind, **kwds)
   2439         plot_obj = klass(data, subplots=subplots, ax=ax, kind=kind, **kwds)
   2440 
-> 2441     plot_obj.generate()
   2442     plot_obj.draw()
   2443     return plot_obj.result

/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/pandas/tools/plotting.py in generate(self)
   1026         self._compute_plot_data()
   1027         self._setup_subplots()
-> 1028         self._make_plot()
   1029         self._add_table()
   1030         self._make_legend()

/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/pandas/tools/plotting.py in _make_plot(self)
   1705                              stacking_id=stacking_id,
   1706                              is_errorbar=is_errorbar,
-> 1707                              **kwds)
   1708             self._add_legend_handle(newlines[0], label, index=i)
   1709 

/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/pandas/tools/plotting.py in _ts_plot(cls, ax, x, data, style, **kwds)
   1745         lines = cls._plot(ax, data.index, data.values, style=style, **kwds)
   1746         # set date formatter, locators and rescale limits
-> 1747         format_dateaxis(ax, ax.freq)
   1748         return lines
   1749 

/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/pandas/tseries/plotting.py in format_dateaxis(subplot, freq)
    292         "t = {0}  y = {1:8f}".format(Period(ordinal=int(t), freq=freq), y))
    293 
--> 294     pylab.draw_if_interactive()

/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/IPython/utils/decorators.py in wrapper(*args, **kw)
     41     def wrapper(*args,**kw):
     42         wrapper.called = False
---> 43         out = func(*args,**kw)
     44         wrapper.called = True
     45         return out

/Users/uge/anaconda/envs/py35/lib/python3.5/site-packages/matplotlib/backends/backend_macosx.py in draw_if_interactive()
    248         figManager =  Gcf.get_active()
    249         if figManager is not None:
--> 250             figManager.canvas.invalidate()
    251 
    252 

AttributeError: 'FigureCanvasAgg' object has no attribute 'invalidate'

In [13]:
def _median(arr):
    return 0 if arr.empty else np.nanmedian(arr)


LDR = df.ldr.resample('30s', label='left').apply(_median)
LDR.head()


Out[13]:
ts
2016-08-12 10:46:00    659.5
2016-08-12 10:46:30    656.0
2016-08-12 10:47:00      0.0
2016-08-12 10:47:30    657.0
2016-08-12 10:48:00    656.0
Freq: 30S, Name: ldr, dtype: float64

In [29]:
df_ldr = pd.DataFrame(df.ldr.resample('2min', label='left').apply(_median))
df_ldr['day'] = df_ldr.index.day
df_ldr['time'] = df_ldr.index.time

dias_ldr = df_ldr.groupby(['day', 'time']).first()
f, ax = plt.subplots(figsize=(18, 12))
days = list(sorted(set(dias_ldr.index.get_level_values(0))))
for i, day in enumerate(days):
    dias_ldr.loc[day].plot(ax=ax, color=[i/len(days), i/len(days), 1, .9], lw=1)

plt.legend([])
plt.show()



In [27]:
ax.get_xlim()


Out[27]:
(0.0, 86280.0)

In [58]:
## LOG RSC_GEN
import re


rg_log = re.compile('\nDEBUG \[base\.py_wrapper\] - (?P<ts1>\d{1,2}/\d\d/\d\d\d\d \d\d:\d\d:\d\d): plot_tile_last_24h TOOK: (?P<took1>\d{1,3}\.\d\d\d) s\nDEBUG \[base\.py_wrapper\] - (?P<ts2>\d{1,2}/\d\d/\d\d\d\d \d\d:\d\d:\d\d): plot_tile_last_24h TOOK: (?P<took2>\d{1,3}\.\d\d\d) s\nDEBUG \[base\.py_wrapper\] - (?P<ts3>\d{1,2}/\d\d/\d\d\d\d \d\d:\d\d:\d\d): plot_tile_last_24h TOOK: (?P<took3>\d{1,3}\.\d\d\d) s\nDEBUG \[mule_rscgen\.py__rsc_generator\] - (?P<tstotal>\d{1,2}/\d\d/\d\d\d\d \d\d:\d\d:\d\d): \(MULE\) TILES generation ok\? (?P<ok>True|False). TOOK (?P<tooktotal>\d{1,3}\.\d\d\d) s')
text = open('/Users/uge/ENERPIDATA/log_rscgen.log', 'r').read()
rg_log.findall(text)


Out[58]:
[('27/08/2016 20:25:07',
  '0.656',
  '27/08/2016 20:25:14',
  '4.295',
  '27/08/2016 20:25:17',
  '0.736',
  '27/08/2016 20:25:18',
  'True',
  '13.608'),
 ('27/08/2016 20:30:06',
  '0.668',
  '27/08/2016 20:30:14',
  '4.563',
  '27/08/2016 20:30:17',
  '0.847',
  '27/08/2016 20:30:19',
  'True',
  '14.937'),
 ('27/08/2016 20:35:07',
  '0.675',
  '27/08/2016 20:35:13',
  '3.766',
  '27/08/2016 20:35:16',
  '0.734',
  '27/08/2016 20:35:17',
  'True',
  '13.013'),
 ('27/08/2016 20:40:07',
  '0.665',
  '27/08/2016 20:40:13',
  '4.287',
  '27/08/2016 20:40:17',
  '0.743',
  '27/08/2016 20:40:19',
  'True',
  '14.056'),
 ('27/08/2016 20:45:07',
  '0.671',
  '27/08/2016 20:45:13',
  '3.749',
  '27/08/2016 20:45:16',
  '0.731',
  '27/08/2016 20:45:18',
  'True',
  '12.861'),
 ('27/08/2016 20:50:07',
  '0.659',
  '27/08/2016 20:50:13',
  '3.821',
  '27/08/2016 20:50:16',
  '0.733',
  '27/08/2016 20:50:18',
  'True',
  '13.259'),
 ('27/08/2016 20:55:07',
  '0.668',
  '27/08/2016 20:55:16',
  '7.414',
  '27/08/2016 20:55:21',
  '1.096',
  '27/08/2016 20:55:23',
  'True',
  '19.119'),
 ('27/08/2016 21:00:06',
  '0.659',
  '27/08/2016 21:00:13',
  '3.684',
  '27/08/2016 21:00:16',
  '0.712',
  '27/08/2016 21:00:17',
  'True',
  '12.999'),
 ('27/08/2016 21:05:06',
  '0.668',
  '27/08/2016 21:05:12',
  '3.681',
  '27/08/2016 21:05:16',
  '0.748',
  '27/08/2016 21:05:17',
  'True',
  '13.593'),
 ('27/08/2016 21:10:07',
  '0.664',
  '27/08/2016 21:10:12',
  '3.576',
  '27/08/2016 21:10:17',
  '1.264',
  '27/08/2016 21:10:18',
  'True',
  '14.311'),
 ('27/08/2016 21:15:07',
  '0.664',
  '27/08/2016 21:15:14',
  '4.531',
  '27/08/2016 21:15:19',
  '0.831',
  '27/08/2016 21:15:20',
  'True',
  '15.791'),
 ('27/08/2016 21:20:06',
  '0.658',
  '27/08/2016 21:20:12',
  '3.917',
  '27/08/2016 21:20:16',
  '1.548',
  '27/08/2016 21:20:18',
  'True',
  '14.148'),
 ('27/08/2016 21:25:06',
  '0.661',
  '27/08/2016 21:25:13',
  '4.511',
  '27/08/2016 21:25:17',
  '1.566',
  '27/08/2016 21:25:19',
  'True',
  '14.882'),
 ('27/08/2016 21:30:07',
  '0.669',
  '27/08/2016 21:30:13',
  '3.804',
  '27/08/2016 21:30:17',
  '0.815',
  '27/08/2016 21:30:18',
  'True',
  '13.742'),
 ('27/08/2016 21:35:06',
  '0.668',
  '27/08/2016 21:35:14',
  '5.370',
  '27/08/2016 21:35:19',
  '1.912',
  '27/08/2016 21:35:21',
  'True',
  '17.532'),
 ('27/08/2016 21:40:07',
  '0.667',
  '27/08/2016 21:40:15',
  '6.354',
  '27/08/2016 21:40:20',
  '0.969',
  '27/08/2016 21:40:22',
  'True',
  '17.901'),
 ('27/08/2016 21:45:07',
  '0.669',
  '27/08/2016 21:45:12',
  '3.614',
  '27/08/2016 21:45:16',
  '1.491',
  '27/08/2016 21:45:18',
  'True',
  '13.788'),
 ('27/08/2016 21:50:07',
  '0.664',
  '27/08/2016 21:50:14',
  '4.726',
  '27/08/2016 21:50:19',
  '0.730',
  '27/08/2016 21:50:20',
  'True',
  '15.253'),
 ('27/08/2016 21:55:07',
  '0.664',
  '27/08/2016 21:55:14',
  '4.857',
  '27/08/2016 21:55:17',
  '0.747',
  '27/08/2016 21:55:18',
  'True',
  '14.082'),
 ('27/08/2016 22:00:06',
  '0.666',
  '27/08/2016 22:00:13',
  '3.993',
  '27/08/2016 22:00:17',
  '1.409',
  '27/08/2016 22:00:18',
  'True',
  '14.001'),
 ('27/08/2016 22:05:06',
  '0.663',
  '27/08/2016 22:05:12',
  '3.876',
  '27/08/2016 22:05:17',
  '0.733',
  '27/08/2016 22:05:18',
  'True',
  '14.236'),
 ('27/08/2016 22:10:07',
  '0.655',
  '27/08/2016 22:10:13',
  '3.750',
  '27/08/2016 22:10:16',
  '1.313',
  '27/08/2016 22:10:18',
  'True',
  '13.848'),
 ('27/08/2016 22:15:07',
  '0.669',
  '27/08/2016 22:15:13',
  '3.971',
  '27/08/2016 22:15:17',
  '1.267',
  '27/08/2016 22:15:18',
  'True',
  '13.960'),
 ('27/08/2016 22:20:07',
  '0.666',
  '27/08/2016 22:20:12',
  '3.580',
  '27/08/2016 22:20:16',
  '1.107',
  '27/08/2016 22:20:19',
  'True',
  '14.879'),
 ('27/08/2016 22:25:07',
  '0.695',
  '27/08/2016 22:25:13',
  '3.669',
  '27/08/2016 22:25:17',
  '1.021',
  '27/08/2016 22:25:18',
  'True',
  '13.994'),
 ('27/08/2016 22:30:06',
  '0.673',
  '27/08/2016 22:30:15',
  '6.099',
  '27/08/2016 22:30:19',
  '0.729',
  '27/08/2016 22:30:20',
  'True',
  '16.229'),
 ('27/08/2016 22:35:06',
  '0.678',
  '27/08/2016 22:35:13',
  '4.571',
  '27/08/2016 22:35:17',
  '0.730',
  '27/08/2016 22:35:19',
  'True',
  '14.760'),
 ('27/08/2016 22:40:07',
  '0.669',
  '27/08/2016 22:40:13',
  '3.722',
  '27/08/2016 22:40:18',
  '0.961',
  '27/08/2016 22:40:20',
  'True',
  '15.460'),
 ('27/08/2016 22:45:07',
  '0.661',
  '27/08/2016 22:45:14',
  '5.011',
  '27/08/2016 22:45:17',
  '0.758',
  '27/08/2016 22:45:19',
  'True',
  '14.178'),
 ('27/08/2016 22:50:07',
  '0.670',
  '27/08/2016 22:50:13',
  '3.947',
  '27/08/2016 22:50:16',
  '0.872',
  '27/08/2016 22:50:18',
  'True',
  '13.915'),
 ('27/08/2016 22:55:07',
  '0.660',
  '27/08/2016 22:55:14',
  '4.349',
  '27/08/2016 22:55:19',
  '0.728',
  '27/08/2016 22:55:21',
  'True',
  '15.868'),
 ('27/08/2016 23:00:07',
  '0.659',
  '27/08/2016 23:00:14',
  '4.998',
  '27/08/2016 23:00:18',
  '1.957',
  '27/08/2016 23:00:20',
  'True',
  '15.509'),
 ('27/08/2016 23:05:07',
  '0.658',
  '27/08/2016 23:05:13',
  '4.140',
  '27/08/2016 23:05:17',
  '0.855',
  '27/08/2016 23:05:19',
  'True',
  '14.301'),
 ('27/08/2016 23:10:07',
  '0.690',
  '27/08/2016 23:10:14',
  '3.606',
  '27/08/2016 23:10:17',
  '0.722',
  '27/08/2016 23:10:18',
  'True',
  '13.971'),
 ('27/08/2016 23:15:07',
  '0.671',
  '27/08/2016 23:15:13',
  '4.527',
  '27/08/2016 23:15:17',
  '0.730',
  '27/08/2016 23:15:19',
  'True',
  '14.384'),
 ('27/08/2016 23:20:07',
  '0.658',
  '27/08/2016 23:20:13',
  '3.669',
  '27/08/2016 23:20:18',
  '1.082',
  '27/08/2016 23:20:20',
  'True',
  '14.843'),
 ('27/08/2016 23:25:07',
  '0.665',
  '27/08/2016 23:25:17',
  '7.476',
  '27/08/2016 23:25:21',
  '0.722',
  '27/08/2016 23:25:23',
  'True',
  '17.782'),
 ('27/08/2016 23:30:07',
  '0.665',
  '27/08/2016 23:30:13',
  '3.664',
  '27/08/2016 23:30:16',
  '0.843',
  '27/08/2016 23:30:18',
  'True',
  '13.661'),
 ('27/08/2016 23:35:06',
  '0.667',
  '27/08/2016 23:35:13',
  '4.673',
  '27/08/2016 23:35:17',
  '0.808',
  '27/08/2016 23:35:18',
  'True',
  '14.238'),
 ('27/08/2016 23:40:06',
  '0.652',
  '27/08/2016 23:40:14',
  '4.987',
  '27/08/2016 23:40:17',
  '0.714',
  '27/08/2016 23:40:18',
  'True',
  '14.433'),
 ('27/08/2016 23:45:06',
  '0.666',
  '27/08/2016 23:45:12',
  '3.875',
  '27/08/2016 23:45:16',
  '0.738',
  '27/08/2016 23:45:17',
  'True',
  '13.465'),
 ('27/08/2016 23:50:06',
  '0.674',
  '27/08/2016 23:50:13',
  '4.098',
  '27/08/2016 23:50:18',
  '1.964',
  '27/08/2016 23:50:19',
  'True',
  '15.574'),
 ('27/08/2016 23:55:07',
  '0.668',
  '27/08/2016 23:55:14',
  '4.822',
  '27/08/2016 23:55:18',
  '0.950',
  '27/08/2016 23:55:19',
  'True',
  '15.065'),
 ('28/08/2016 00:00:06',
  '0.666',
  '28/08/2016 00:00:13',
  '4.120',
  '28/08/2016 00:00:16',
  '0.873',
  '28/08/2016 00:00:18',
  'True',
  '13.626'),
 ('28/08/2016 00:05:07',
  '0.663',
  '28/08/2016 00:05:14',
  '5.002',
  '28/08/2016 00:05:18',
  '0.722',
  '28/08/2016 00:05:19',
  'True',
  '14.575'),
 ('28/08/2016 00:10:07',
  '0.665',
  '28/08/2016 00:10:13',
  '3.797',
  '28/08/2016 00:10:16',
  '0.720',
  '28/08/2016 00:10:18',
  'True',
  '13.431'),
 ('28/08/2016 00:15:08',
  '0.673',
  '28/08/2016 00:15:15',
  '4.382',
  '28/08/2016 00:15:18',
  '0.719',
  '28/08/2016 00:15:20',
  'True',
  '14.384'),
 ('28/08/2016 00:20:07',
  '0.677',
  '28/08/2016 00:20:13',
  '4.108',
  '28/08/2016 00:20:17',
  '0.910',
  '28/08/2016 00:20:18',
  'True',
  '13.681'),
 ('28/08/2016 00:25:06',
  '0.667',
  '28/08/2016 00:25:12',
  '3.718',
  '28/08/2016 00:25:16',
  '1.087',
  '28/08/2016 00:25:18',
  'True',
  '14.064'),
 ('28/08/2016 00:30:06',
  '0.664',
  '28/08/2016 00:30:11',
  '3.582',
  '28/08/2016 00:30:15',
  '0.744',
  '28/08/2016 00:30:16',
  'True',
  '12.246'),
 ('28/08/2016 00:35:06',
  '0.662',
  '28/08/2016 00:35:12',
  '4.010',
  '28/08/2016 00:35:16',
  '0.723',
  '28/08/2016 00:35:17',
  'True',
  '13.244'),
 ('28/08/2016 00:40:06',
  '0.665',
  '28/08/2016 00:40:12',
  '4.130',
  '28/08/2016 00:40:16',
  '0.725',
  '28/08/2016 00:40:17',
  'True',
  '12.670'),
 ('28/08/2016 00:45:07',
  '0.666',
  '28/08/2016 00:45:13',
  '4.033',
  '28/08/2016 00:45:16',
  '0.758',
  '28/08/2016 00:45:18',
  'True',
  '12.681'),
 ('28/08/2016 00:50:07',
  '0.673',
  '28/08/2016 00:50:14',
  '4.317',
  '28/08/2016 00:50:17',
  '0.870',
  '28/08/2016 00:50:18',
  'True',
  '13.666'),
 ('28/08/2016 00:55:06',
  '0.661',
  '28/08/2016 00:55:12',
  '3.699',
  '28/08/2016 00:55:17',
  '0.718',
  '28/08/2016 00:55:19',
  'True',
  '14.275'),
 ('28/08/2016 01:00:07',
  '0.662',
  '28/08/2016 01:00:13',
  '3.900',
  '28/08/2016 01:00:16',
  '0.729',
  '28/08/2016 01:00:19',
  'True',
  '13.773'),
 ('28/08/2016 01:05:06',
  '0.663',
  '28/08/2016 01:05:12',
  '3.511',
  '28/08/2016 01:05:15',
  '1.048',
  '28/08/2016 01:05:17',
  'True',
  '12.845'),
 ('28/08/2016 01:10:06',
  '0.664',
  '28/08/2016 01:10:12',
  '4.228',
  '28/08/2016 01:10:16',
  '0.724',
  '28/08/2016 01:10:17',
  'True',
  '13.348'),
 ('28/08/2016 01:15:06',
  '0.661',
  '28/08/2016 01:15:13',
  '5.147',
  '28/08/2016 01:15:16',
  '0.721',
  '28/08/2016 01:15:18',
  'True',
  '13.612'),
 ('28/08/2016 01:20:07',
  '0.701',
  '28/08/2016 01:20:13',
  '4.380',
  '28/08/2016 01:20:17',
  '0.937',
  '28/08/2016 01:20:19',
  'True',
  '14.383'),
 ('28/08/2016 01:25:07',
  '0.670',
  '28/08/2016 01:25:13',
  '3.757',
  '28/08/2016 01:25:17',
  '0.725',
  '28/08/2016 01:25:19',
  'True',
  '14.102'),
 ('28/08/2016 01:30:06',
  '0.655',
  '28/08/2016 01:30:13',
  '4.105',
  '28/08/2016 01:30:16',
  '0.738',
  '28/08/2016 01:30:18',
  'True',
  '13.744'),
 ('28/08/2016 01:35:06',
  '0.657',
  '28/08/2016 01:35:13',
  '5.170',
  '28/08/2016 01:35:18',
  '0.737',
  '28/08/2016 01:35:19',
  'True',
  '15.608'),
 ('28/08/2016 01:40:07',
  '0.665',
  '28/08/2016 01:40:13',
  '3.574',
  '28/08/2016 01:40:17',
  '0.878',
  '28/08/2016 01:40:19',
  'True',
  '14.078'),
 ('28/08/2016 01:45:07',
  '0.672',
  '28/08/2016 01:45:13',
  '4.636',
  '28/08/2016 01:45:17',
  '0.720',
  '28/08/2016 01:45:19',
  'True',
  '14.083'),
 ('28/08/2016 01:50:06',
  '0.671',
  '28/08/2016 01:50:14',
  '4.968',
  '28/08/2016 01:50:18',
  '0.791',
  '28/08/2016 01:50:19',
  'True',
  '14.827'),
 ('28/08/2016 01:55:06',
  '0.665',
  '28/08/2016 01:55:12',
  '4.272',
  '28/08/2016 01:55:16',
  '0.722',
  '28/08/2016 01:55:18',
  'True',
  '13.652'),
 ('28/08/2016 02:00:06',
  '0.664',
  '28/08/2016 02:00:14',
  '4.770',
  '28/08/2016 02:00:18',
  '1.300',
  '28/08/2016 02:00:20',
  'True',
  '16.059'),
 ('28/08/2016 02:05:06',
  '0.674',
  '28/08/2016 02:05:14',
  '5.188',
  '28/08/2016 02:05:19',
  '0.758',
  '28/08/2016 02:05:21',
  'True',
  '16.382'),
 ('28/08/2016 02:10:06',
  '0.658',
  '28/08/2016 02:10:12',
  '3.823',
  '28/08/2016 02:10:16',
  '1.020',
  '28/08/2016 02:10:17',
  'True',
  '13.049'),
 ('28/08/2016 02:15:06',
  '0.663',
  '28/08/2016 02:15:12',
  '3.561',
  '28/08/2016 02:15:16',
  '1.176',
  '28/08/2016 02:15:17',
  'True',
  '13.099'),
 ('28/08/2016 02:20:06',
  '0.665',
  '28/08/2016 02:20:12',
  '4.035',
  '28/08/2016 02:20:16',
  '0.730',
  '28/08/2016 02:20:18',
  'True',
  '13.917'),
 ('28/08/2016 02:25:06',
  '0.688',
  '28/08/2016 02:25:13',
  '4.623',
  '28/08/2016 02:25:16',
  '0.749',
  '28/08/2016 02:25:17',
  'True',
  '13.669'),
 ('28/08/2016 02:30:06',
  '0.677',
  '28/08/2016 02:30:12',
  '3.676',
  '28/08/2016 02:30:15',
  '0.739',
  '28/08/2016 02:30:17',
  'True',
  '12.388'),
 ('28/08/2016 02:35:06',
  '0.666',
  '28/08/2016 02:35:12',
  '3.551',
  '28/08/2016 02:35:16',
  '0.756',
  '28/08/2016 02:35:17',
  'True',
  '12.965'),
 ('28/08/2016 02:40:06',
  '0.662',
  '28/08/2016 02:40:14',
  '5.237',
  '28/08/2016 02:40:19',
  '1.748',
  '28/08/2016 02:40:20',
  'True',
  '16.281'),
 ('28/08/2016 02:45:07',
  '0.680',
  '28/08/2016 02:45:14',
  '4.432',
  '28/08/2016 02:45:18',
  '1.025',
  '28/08/2016 02:45:20',
  'True',
  '15.420'),
 ('28/08/2016 02:50:06',
  '0.667',
  '28/08/2016 02:50:14',
  '5.938',
  '28/08/2016 02:50:18',
  '0.729',
  '28/08/2016 02:50:20',
  'True',
  '15.030'),
 ('28/08/2016 02:55:06',
  '0.663',
  '28/08/2016 02:55:14',
  '5.483',
  '28/08/2016 02:55:17',
  '0.735',
  '28/08/2016 02:55:18',
  'True',
  '14.122'),
 ('28/08/2016 03:00:06',
  '0.656',
  '28/08/2016 03:00:14',
  '5.293',
  '28/08/2016 03:00:18',
  '1.047',
  '28/08/2016 03:00:20',
  'True',
  '15.585'),
 ('28/08/2016 03:05:06',
  '0.654',
  '28/08/2016 03:05:13',
  '4.191',
  '28/08/2016 03:05:17',
  '0.735',
  '28/08/2016 03:05:18',
  'True',
  '13.961'),
 ('28/08/2016 03:10:06',
  '0.658',
  '28/08/2016 03:10:12',
  '3.515',
  '28/08/2016 03:10:15',
  '0.742',
  '28/08/2016 03:10:17',
  'True',
  '13.188'),
 ('28/08/2016 03:15:06',
  '0.656',
  '28/08/2016 03:15:12',
  '4.027',
  '28/08/2016 03:15:16',
  '1.129',
  '28/08/2016 03:15:18',
  'True',
  '14.397'),
 ('28/08/2016 03:20:07',
  '0.666',
  '28/08/2016 03:20:12',
  '3.595',
  '28/08/2016 03:20:16',
  '0.726',
  '28/08/2016 03:20:19',
  'True',
  '14.180'),
 ('28/08/2016 03:25:06',
  '0.659',
  '28/08/2016 03:25:14',
  '5.356',
  '28/08/2016 03:25:18',
  '0.716',
  '28/08/2016 03:25:19',
  'True',
  '14.608'),
 ('28/08/2016 03:30:06',
  '0.666',
  '28/08/2016 03:30:13',
  '5.537',
  '28/08/2016 03:30:17',
  '0.727',
  '28/08/2016 03:30:19',
  'True',
  '15.137'),
 ('28/08/2016 03:35:07',
  '0.672',
  '28/08/2016 03:35:13',
  '4.159',
  '28/08/2016 03:35:16',
  '0.728',
  '28/08/2016 03:35:17',
  'True',
  '12.923'),
 ('28/08/2016 03:40:06',
  '0.656',
  '28/08/2016 03:40:13',
  '4.168',
  '28/08/2016 03:40:17',
  '1.554',
  '28/08/2016 03:40:19',
  'True',
  '14.994'),
 ('28/08/2016 03:45:06',
  '0.668',
  '28/08/2016 03:45:12',
  '3.713',
  '28/08/2016 03:45:16',
  '1.431',
  '28/08/2016 03:45:18',
  'True',
  '14.513'),
 ('28/08/2016 03:50:06',
  '0.680',
  '28/08/2016 03:50:13',
  '4.517',
  '28/08/2016 03:50:17',
  '1.119',
  '28/08/2016 03:50:18',
  'True',
  '14.087'),
 ('28/08/2016 03:55:06',
  '0.656',
  '28/08/2016 03:55:12',
  '3.996',
  '28/08/2016 03:55:16',
  '0.739',
  '28/08/2016 03:55:18',
  'True',
  '13.554'),
 ('28/08/2016 04:00:06',
  '0.656',
  '28/08/2016 04:00:13',
  '5.109',
  '28/08/2016 04:00:17',
  '0.752',
  '28/08/2016 04:00:19',
  'True',
  '14.949'),
 ('28/08/2016 04:05:06',
  '0.657',
  '28/08/2016 04:05:13',
  '4.525',
  '28/08/2016 04:05:17',
  '0.807',
  '28/08/2016 04:05:19',
  'True',
  '14.729'),
 ('28/08/2016 04:10:06',
  '0.661',
  '28/08/2016 04:10:12',
  '4.153',
  '28/08/2016 04:10:18',
  '1.299',
  '28/08/2016 04:10:20',
  'True',
  '16.112'),
 ('28/08/2016 04:15:06',
  '0.668',
  '28/08/2016 04:15:12',
  '3.563',
  '28/08/2016 04:15:16',
  '1.140',
  '28/08/2016 04:15:17',
  'True',
  '13.027'),
 ('28/08/2016 04:20:06',
  '0.665',
  '28/08/2016 04:20:12',
  '3.713',
  '28/08/2016 04:20:16',
  '0.733',
  '28/08/2016 04:20:18',
  'True',
  '13.785'),
 ('28/08/2016 04:25:07',
  '0.671',
  '28/08/2016 04:25:14',
  '4.729',
  '28/08/2016 04:25:19',
  '1.618',
  '28/08/2016 04:25:21',
  'True',
  '15.115'),
 ('28/08/2016 04:30:06',
  '0.664',
  '28/08/2016 04:30:14',
  '5.223',
  '28/08/2016 04:30:18',
  '1.296',
  '28/08/2016 04:30:20',
  'True',
  '15.328'),
 ('28/08/2016 04:35:06',
  '0.675',
  '28/08/2016 04:35:13',
  '4.401',
  '28/08/2016 04:35:16',
  '0.723',
  '28/08/2016 04:35:17',
  'True',
  '13.082'),
 ('28/08/2016 04:40:06',
  '0.663',
  '28/08/2016 04:40:13',
  '4.121',
  '28/08/2016 04:40:17',
  '0.721',
  '28/08/2016 04:40:19',
  'True',
  '14.500'),
 ('28/08/2016 04:45:06',
  '0.657',
  '28/08/2016 04:45:12',
  '3.534',
  '28/08/2016 04:45:15',
  '0.721',
  '28/08/2016 04:45:17',
  'True',
  '12.926'),
 ('28/08/2016 04:50:06',
  '0.659',
  '28/08/2016 04:50:13',
  '4.636',
  '28/08/2016 04:50:16',
  '1.166',
  '28/08/2016 04:50:18',
  'True',
  '14.021'),
 ('28/08/2016 04:55:06',
  '0.678',
  '28/08/2016 04:55:13',
  '4.649',
  '28/08/2016 04:55:17',
  '0.735',
  '28/08/2016 04:55:19',
  'True',
  '14.531'),
 ('28/08/2016 05:00:07',
  '0.660',
  '28/08/2016 05:00:14',
  '4.829',
  '28/08/2016 05:00:18',
  '1.032',
  '28/08/2016 05:00:20',
  'True',
  '14.675'),
 ('28/08/2016 05:05:06',
  '0.654',
  '28/08/2016 05:05:12',
  '3.762',
  '28/08/2016 05:05:16',
  '0.721',
  '28/08/2016 05:05:17',
  'True',
  '13.032'),
 ('28/08/2016 05:10:06',
  '0.669',
  '28/08/2016 05:10:13',
  '5.123',
  '28/08/2016 05:10:17',
  '0.735',
  '28/08/2016 05:10:18',
  'True',
  '14.448'),
 ('28/08/2016 05:15:06',
  '0.671',
  '28/08/2016 05:15:14',
  '4.450',
  '28/08/2016 05:15:18',
  '0.817',
  '28/08/2016 05:15:19',
  'True',
  '14.810'),
 ('28/08/2016 05:20:07',
  '0.658',
  '28/08/2016 05:20:12',
  '3.619',
  '28/08/2016 05:20:17',
  '1.152',
  '28/08/2016 05:20:19',
  'True',
  '14.757'),
 ('28/08/2016 05:25:07',
  '0.664',
  '28/08/2016 05:25:12',
  '3.653',
  '28/08/2016 05:25:16',
  '0.751',
  '28/08/2016 05:25:17',
  'True',
  '12.774'),
 ('28/08/2016 05:30:06',
  '0.666',
  '28/08/2016 05:30:12',
  '4.180',
  '28/08/2016 05:30:16',
  '0.732',
  '28/08/2016 05:30:18',
  'True',
  '13.960'),
 ('28/08/2016 05:35:07',
  '0.666',
  '28/08/2016 05:35:14',
  '4.885',
  '28/08/2016 05:35:17',
  '0.783',
  '28/08/2016 05:35:19',
  'True',
  '14.219'),
 ('28/08/2016 05:40:06',
  '0.658',
  '28/08/2016 05:40:13',
  '5.030',
  '28/08/2016 05:40:17',
  '1.563',
  '28/08/2016 05:40:19',
  'True',
  '15.180'),
 ('28/08/2016 05:45:07',
  '0.666',
  '28/08/2016 05:45:14',
  '3.549',
  '28/08/2016 05:45:17',
  '0.743',
  '28/08/2016 05:45:19',
  'True',
  '14.114'),
 ('28/08/2016 05:50:06',
  '0.665',
  '28/08/2016 05:50:12',
  '3.784',
  '28/08/2016 05:50:16',
  '0.735',
  '28/08/2016 05:50:18',
  'True',
  '13.230'),
 ('28/08/2016 05:55:07',
  '0.672',
  '28/08/2016 05:55:14',
  '4.361',
  '28/08/2016 05:55:17',
  '1.073',
  '28/08/2016 05:55:19',
  'True',
  '14.368'),
 ('28/08/2016 06:00:07',
  '0.650',
  '28/08/2016 06:00:14',
  '5.480',
  '28/08/2016 06:00:18',
  '0.747',
  '28/08/2016 06:00:20',
  'True',
  '15.383'),
 ('28/08/2016 06:05:06',
  '0.661',
  '28/08/2016 06:05:12',
  '3.724',
  '28/08/2016 06:05:16',
  '0.712',
  '28/08/2016 06:05:17',
  'True',
  '13.553'),
 ('28/08/2016 06:10:06',
  '0.668',
  '28/08/2016 06:10:13',
  '4.950',
  '28/08/2016 06:10:16',
  '0.725',
  '28/08/2016 06:10:18',
  'True',
  '14.475'),
 ('28/08/2016 06:15:06',
  '0.661',
  '28/08/2016 06:15:13',
  '5.076',
  '28/08/2016 06:15:17',
  '0.887',
  '28/08/2016 06:15:19',
  'True',
  '14.487'),
 ('28/08/2016 06:20:07',
  '0.668',
  '28/08/2016 06:20:13',
  '3.710',
  '28/08/2016 06:20:16',
  '0.727',
  '28/08/2016 06:20:17',
  'True',
  '12.343'),
 ('28/08/2016 06:25:07',
  '0.657',
  '28/08/2016 06:25:16',
  '5.703',
  '28/08/2016 06:25:20',
  '1.003',
  '28/08/2016 06:25:21',
  'True',
  '16.833'),
 ('28/08/2016 06:30:06',
  '0.668',
  '28/08/2016 06:30:12',
  '3.992',
  '28/08/2016 06:30:16',
  '0.870',
  '28/08/2016 06:30:18',
  'True',
  '13.557'),
 ('28/08/2016 06:35:06',
  '0.665',
  '28/08/2016 06:35:13',
  '3.758',
  '28/08/2016 06:35:18',
  '1.353',
  '28/08/2016 06:35:19',
  'True',
  '14.703'),
 ('28/08/2016 06:40:06',
  '0.665',
  '28/08/2016 06:40:14',
  '5.429',
  '28/08/2016 06:40:18',
  '0.723',
  '28/08/2016 06:40:19',
  'True',
  '15.455'),
 ('28/08/2016 06:45:06',
  '0.662',
  '28/08/2016 06:45:13',
  '5.068',
  '28/08/2016 06:45:17',
  '0.904',
  '28/08/2016 06:45:19',
  'True',
  '14.693'),
 ('28/08/2016 06:50:07',
  '0.668',
  '28/08/2016 06:50:14',
  '4.871',
  '28/08/2016 06:50:17',
  '0.757',
  '28/08/2016 06:50:19',
  'True',
  '14.451'),
 ('28/08/2016 06:55:06',
  '0.669',
  '28/08/2016 06:55:13',
  '4.106',
  '28/08/2016 06:55:16',
  '0.718',
  '28/08/2016 06:55:18',
  'True',
  '13.863'),
 ('28/08/2016 07:00:06',
  '0.662',
  '28/08/2016 07:00:12',
  '3.567',
  '28/08/2016 07:00:15',
  '0.812',
  '28/08/2016 07:00:17',
  'True',
  '12.878'),
 ('28/08/2016 07:05:06',
  '0.670',
  '28/08/2016 07:05:12',
  '3.759',
  '28/08/2016 07:05:16',
  '0.932',
  '28/08/2016 07:05:18',
  'True',
  '14.177'),
 ('28/08/2016 07:10:06',
  '0.663',
  '28/08/2016 07:10:12',
  '3.580',
  '28/08/2016 07:10:16',
  '0.815',
  '28/08/2016 07:10:18',
  'True',
  '13.601'),
 ('28/08/2016 07:15:06',
  '0.657',
  '28/08/2016 07:15:12',
  '3.735',
  '28/08/2016 07:15:15',
  '0.711',
  '28/08/2016 07:15:17',
  'True',
  '13.049'),
 ('28/08/2016 07:20:06',
  '0.662',
  '28/08/2016 07:20:13',
  '5.381',
  '28/08/2016 07:20:19',
  '1.955',
  '28/08/2016 07:20:22',
  'True',
  '18.675'),
 ('28/08/2016 07:25:06',
  '0.665',
  '28/08/2016 07:25:13',
  '3.816',
  '28/08/2016 07:25:16',
  '0.725',
  '28/08/2016 07:25:18',
  'True',
  '13.526'),
 ('28/08/2016 07:30:07',
  '0.682',
  '28/08/2016 07:30:15',
  '4.941',
  '28/08/2016 07:30:18',
  '0.782',
  '28/08/2016 07:30:20',
  'True',
  '14.972'),
 ('28/08/2016 07:35:07',
  '0.654',
  '28/08/2016 07:35:13',
  '3.621',
  '28/08/2016 07:35:18',
  '0.876',
  '28/08/2016 07:35:19',
  'True',
  '14.427'),
 ('28/08/2016 07:40:06',
  '0.664',
  '28/08/2016 07:40:11',
  '3.618',
  '28/08/2016 07:40:15',
  '0.729',
  '28/08/2016 07:40:16',
  'True',
  '12.863'),
 ('28/08/2016 07:45:06',
  '0.676',
  '28/08/2016 07:45:12',
  '3.600',
  '28/08/2016 07:45:17',
  '1.226',
  '28/08/2016 07:45:19',
  'True',
  '14.668'),
 ('28/08/2016 07:50:07',
  '0.666',
  '28/08/2016 07:50:14',
  '4.227',
  '28/08/2016 07:50:18',
  '1.589',
  '28/08/2016 07:50:20',
  'True',
  '15.206'),
 ('28/08/2016 07:55:07',
  '0.661',
  '28/08/2016 07:55:14',
  '4.648',
  '28/08/2016 07:55:17',
  '0.734',
  '28/08/2016 07:55:18',
  'True',
  '13.800'),
 ('28/08/2016 08:00:06',
  '0.651',
  '28/08/2016 08:00:12',
  '4.078',
  '28/08/2016 08:00:16',
  '0.726',
  '28/08/2016 08:00:17',
  'True',
  '13.166'),
 ('28/08/2016 08:05:07',
  '0.668',
  '28/08/2016 08:05:13',
  '3.942',
  '28/08/2016 08:05:16',
  '0.726',
  '28/08/2016 08:05:17',
  'True',
  '12.955'),
 ('28/08/2016 08:10:06',
  '0.661',
  '28/08/2016 08:10:14',
  '5.737',
  '28/08/2016 08:10:19',
  '1.016',
  '28/08/2016 08:10:21',
  'True',
  '16.845'),
 ('28/08/2016 08:15:06',
  '0.663',
  '28/08/2016 08:15:13',
  '4.538',
  '28/08/2016 08:15:17',
  '0.721',
  '28/08/2016 08:15:18',
  'True',
  '14.137'),
 ('28/08/2016 08:20:06',
  '0.665',
  '28/08/2016 08:20:13',
  '4.332',
  '28/08/2016 08:20:18',
  '0.761',
  '28/08/2016 08:20:19',
  'True',
  '15.424'),
 ('28/08/2016 08:25:06',
  '0.668',
  '28/08/2016 08:25:14',
  '5.589',
  '28/08/2016 08:25:17',
  '0.723',
  '28/08/2016 08:25:18',
  'True',
  '14.350'),
 ('28/08/2016 08:30:06',
  '0.670',
  '28/08/2016 08:30:14',
  '5.420',
  '28/08/2016 08:30:18',
  '0.734',
  '28/08/2016 08:30:20',
  'True',
  '16.402'),
 ('28/08/2016 08:35:07',
  '0.667',
  '28/08/2016 08:35:12',
  '3.578',
  '28/08/2016 08:35:15',
  '0.728',
  '28/08/2016 08:35:17',
  'True',
  '12.304'),
 ('28/08/2016 08:40:06',
  '0.672',
  '28/08/2016 08:40:14',
  '5.044',
  '28/08/2016 08:40:17',
  '0.850',
  '28/08/2016 08:40:19',
  'True',
  '14.771'),
 ('28/08/2016 08:45:07',
  '0.667',
  '28/08/2016 08:45:13',
  '4.108',
  '28/08/2016 08:45:17',
  '0.743',
  '28/08/2016 08:45:19',
  'True',
  '13.668'),
 ('28/08/2016 08:50:06',
  '0.664',
  '28/08/2016 08:50:12',
  '3.985',
  '28/08/2016 08:50:17',
  '0.733',
  '28/08/2016 08:50:18',
  'True',
  '13.910'),
 ('28/08/2016 08:55:06',
  '0.662',
  '28/08/2016 08:55:12',
  '4.054',
  '28/08/2016 08:55:16',
  '1.141',
  '28/08/2016 08:55:17',
  'True',
  '13.160'),
 ('28/08/2016 09:00:07',
  '0.685',
  '28/08/2016 09:00:14',
  '5.024',
  '28/08/2016 09:00:19',
  '0.740',
  '28/08/2016 09:00:20',
  'True',
  '15.581'),
 ('28/08/2016 09:05:06',
  '0.663',
  '28/08/2016 09:05:12',
  '4.017',
  '28/08/2016 09:05:16',
  '0.730',
  '28/08/2016 09:05:17',
  'True',
  '12.858'),
 ('28/08/2016 09:10:07',
  '0.668',
  '28/08/2016 09:10:12',
  '3.565',
  '28/08/2016 09:10:16',
  '0.768',
  '28/08/2016 09:10:18',
  'True',
  '13.677'),
 ('28/08/2016 09:15:06',
  '0.656',
  '28/08/2016 09:15:13',
  '4.907',
  '28/08/2016 09:15:17',
  '1.143',
  '28/08/2016 09:15:19',
  'True',
  '14.928'),
 ('28/08/2016 09:20:06',
  '0.673',
  '28/08/2016 09:20:13',
  '4.613',
  '28/08/2016 09:20:18',
  '0.825',
  '28/08/2016 09:20:19',
  'True',
  '15.029'),
 ('28/08/2016 09:25:06',
  '0.668',
  '28/08/2016 09:25:13',
  '4.157',
  '28/08/2016 09:25:16',
  '0.728',
  '28/08/2016 09:25:18',
  'True',
  '13.443'),
 ('28/08/2016 09:30:07',
  '0.665',
  '28/08/2016 09:30:14',
  '5.055',
  '28/08/2016 09:30:17',
  '0.744',
  '28/08/2016 09:30:18',
  'True',
  '13.704'),
 ('28/08/2016 09:35:06',
  '0.662',
  '28/08/2016 09:35:14',
  '5.147',
  '28/08/2016 09:35:17',
  '0.717',
  '28/08/2016 09:35:18',
  'True',
  '14.058'),
 ('28/08/2016 09:40:06',
  '0.667',
  '28/08/2016 09:40:12',
  '3.620',
  '28/08/2016 09:40:16',
  '1.507',
  '28/08/2016 09:40:18',
  'True',
  '13.898'),
 ('28/08/2016 09:45:06',
  '0.658',
  '28/08/2016 09:45:12',
  '4.028',
  '28/08/2016 09:45:16',
  '1.570',
  '28/08/2016 09:45:18',
  'True',
  '14.625'),
 ('28/08/2016 09:50:06',
  '0.662',
  '28/08/2016 09:50:14',
  '4.677',
  '28/08/2016 09:50:19',
  '0.717',
  '28/08/2016 09:50:21',
  'True',
  '16.082'),
 ('28/08/2016 09:55:07',
  '0.667',
  '28/08/2016 09:55:13',
  '4.172',
  '28/08/2016 09:55:17',
  '0.722',
  '28/08/2016 09:55:18',
  'True',
  '13.878'),
 ('28/08/2016 10:00:07',
  '0.663',
  '28/08/2016 10:00:15',
  '6.022',
  '28/08/2016 10:00:19',
  '0.747',
  '28/08/2016 10:00:21',
  'True',
  '16.608'),
 ('28/08/2016 10:05:06',
  '0.662',
  '28/08/2016 10:05:13',
  '4.258',
  '28/08/2016 10:05:16',
  '0.803',
  '28/08/2016 10:05:18',
  'True',
  '13.565'),
 ('28/08/2016 10:10:07',
  '0.671',
  '28/08/2016 10:10:15',
  '4.985',
  '28/08/2016 10:10:18',
  '0.758',
  '28/08/2016 10:10:20',
  'True',
  '14.939'),
 ('28/08/2016 10:15:06',
  '0.660',
  '28/08/2016 10:15:12',
  '4.039',
  '28/08/2016 10:15:16',
  '1.798',
  '28/08/2016 10:15:18',
  'True',
  '14.389'),
 ('28/08/2016 10:20:06',
  '0.657',
  '28/08/2016 10:20:12',
  '3.653',
  '28/08/2016 10:20:15',
  '0.717',
  '28/08/2016 10:20:17',
  'True',
  '13.614'),
 ('28/08/2016 10:25:06',
  '0.659',
  '28/08/2016 10:25:13',
  '5.094',
  '28/08/2016 10:25:17',
  '0.737',
  '28/08/2016 10:25:18',
  'True',
  '14.598'),
 ('28/08/2016 10:30:06',
  '0.662',
  '28/08/2016 10:30:12',
  '3.585',
  '28/08/2016 10:30:16',
  '1.393',
  '28/08/2016 10:30:18',
  'True',
  '14.030'),
 ('28/08/2016 10:35:07',
  '0.669',
  '28/08/2016 10:35:14',
  '5.231',
  '28/08/2016 10:35:18',
  '0.756',
  '28/08/2016 10:35:20',
  'True',
  '15.902'),
 ('28/08/2016 10:40:06',
  '0.668',
  '28/08/2016 10:40:13',
  '5.203',
  '28/08/2016 10:40:18',
  '0.742',
  '28/08/2016 10:40:20',
  'True',
  '16.037'),
 ('28/08/2016 10:45:06',
  '0.668',
  '28/08/2016 10:45:13',
  '4.222',
  '28/08/2016 10:45:16',
  '0.759',
  '28/08/2016 10:45:19',
  'True',
  '15.082'),
 ('28/08/2016 10:50:07',
  '0.662',
  '28/08/2016 10:50:16',
  '7.125',
  '28/08/2016 10:50:19',
  '0.769',
  '28/08/2016 10:50:21',
  'True',
  '16.534'),
 ('28/08/2016 10:55:06',
  '0.662',
  '28/08/2016 10:55:12',
  '3.686',
  '28/08/2016 10:55:15',
  '0.759',
  '28/08/2016 10:55:17',
  'True',
  '13.057'),
 ('28/08/2016 11:00:07',
  '0.666',
  '28/08/2016 11:00:14',
  '4.630',
  '28/08/2016 11:00:18',
  '1.024',
  '28/08/2016 11:00:20',
  'True',
  '15.057'),
 ('28/08/2016 11:05:06',
  '0.661',
  '28/08/2016 11:05:14',
  '4.461',
  '28/08/2016 11:05:17',
  '0.737',
  '28/08/2016 11:05:19',
  'True',
  '14.670'),
 ('28/08/2016 11:10:07',
  '0.653',
  '28/08/2016 11:10:13',
  '4.587',
  '28/08/2016 11:10:17',
  '0.726',
  '28/08/2016 11:10:18',
  'True',
  '13.291'),
 ('28/08/2016 11:15:06',
  '0.664',
  '28/08/2016 11:15:13',
  '4.448',
  '28/08/2016 11:15:16',
  '0.740',
  '28/08/2016 11:15:17',
  'True',
  '13.746'),
 ('28/08/2016 11:20:06',
  '0.668',
  '28/08/2016 11:20:12',
  '3.672',
  '28/08/2016 11:20:16',
  '0.795',
  '28/08/2016 11:20:18',
  'True',
  '13.567'),
 ('28/08/2016 11:25:07',
  '0.667',
  '28/08/2016 11:25:13',
  '4.305',
  '28/08/2016 11:25:18',
  '0.978',
  '28/08/2016 11:25:20',
  'True',
  '15.126'),
 ('28/08/2016 11:30:07',
  '0.665',
  '28/08/2016 11:30:13',
  '3.620',
  '28/08/2016 11:30:17',
  '0.764',
  '28/08/2016 11:30:19',
  'True',
  '14.381'),
 ('28/08/2016 11:35:07',
  '0.660',
  '28/08/2016 11:35:14',
  '4.517',
  '28/08/2016 11:35:17',
  '1.157',
  '28/08/2016 11:35:19',
  'True',
  '14.298'),
 ('28/08/2016 11:40:06',
  '0.668',
  '28/08/2016 11:40:12',
  '3.829',
  '28/08/2016 11:40:15',
  '0.716',
  '28/08/2016 11:40:17',
  'True',
  '13.012'),
 ('28/08/2016 11:45:07',
  '0.664',
  '28/08/2016 11:45:13',
  '4.003',
  '28/08/2016 11:45:16',
  '0.738',
  '28/08/2016 11:45:18',
  'True',
  '13.099'),
 ('28/08/2016 11:50:06',
  '0.669',
  '28/08/2016 11:50:15',
  '5.446',
  '28/08/2016 11:50:18',
  '0.767',
  '28/08/2016 11:50:20',
  'True',
  '15.645'),
 ('28/08/2016 11:55:06',
  '0.664',
  '28/08/2016 11:55:12',
  '3.584',
  '28/08/2016 11:55:15',
  '0.742',
  '28/08/2016 11:55:16',
  'True',
  '12.564'),
 ('28/08/2016 12:00:06',
  '0.665',
  '28/08/2016 12:00:12',
  '3.802',
  '28/08/2016 12:00:16',
  '1.087',
  '28/08/2016 12:00:18',
  'True',
  '14.003'),
 ('28/08/2016 12:05:06',
  '0.656',
  '28/08/2016 12:05:12',
  '3.809',
  '28/08/2016 12:05:16',
  '0.737',
  '28/08/2016 12:05:17',
  'True',
  '13.662'),
 ('28/08/2016 12:10:06',
  '0.661',
  '28/08/2016 12:10:12',
  '4.075',
  '28/08/2016 12:10:16',
  '0.726',
  '28/08/2016 12:10:17',
  'True',
  '13.041'),
 ('28/08/2016 12:15:06',
  '0.667',
  '28/08/2016 12:15:12',
  '4.108',
  '28/08/2016 12:15:17',
  '1.041',
  '28/08/2016 12:15:19',
  'True',
  '15.251'),
 ('28/08/2016 12:20:06',
  '0.652',
  '28/08/2016 12:20:12',
  '4.005',
  '28/08/2016 12:20:15',
  '0.721',
  '28/08/2016 12:20:17',
  'True',
  '12.943'),
 ('28/08/2016 12:25:07',
  '0.668',
  '28/08/2016 12:25:13',
  '3.738',
  '28/08/2016 12:25:17',
  '0.765',
  '28/08/2016 12:25:18',
  'True',
  '13.593'),
 ('28/08/2016 12:30:06',
  '0.667',
  '28/08/2016 12:30:12',
  '4.183',
  '28/08/2016 12:30:16',
  '0.749',
  '28/08/2016 12:30:18',
  'True',
  '13.745'),
 ('28/08/2016 12:35:07',
  '0.664',
  '28/08/2016 12:35:13',
  '3.868',
  '28/08/2016 12:35:17',
  '0.725',
  '28/08/2016 12:35:18',
  'True',
  '13.790'),
 ('28/08/2016 12:40:07',
  '0.663',
  '28/08/2016 12:40:13',
  '3.883',
  '28/08/2016 12:40:17',
  '1.382',
  '28/08/2016 12:40:19',
  'True',
  '14.120'),
 ('28/08/2016 12:45:07',
  '0.658',
  '28/08/2016 12:45:14',
  '4.857',
  '28/08/2016 12:45:17',
  '0.960',
  '28/08/2016 12:45:19',
  'True',
  '14.542'),
 ('28/08/2016 12:50:07',
  '0.668',
  '28/08/2016 12:50:15',
  '4.710',
  '28/08/2016 12:50:18',
  '0.720',
  '28/08/2016 12:50:20',
  'True',
  '15.012'),
 ('28/08/2016 12:55:06',
  '0.676',
  '28/08/2016 12:55:13',
  '3.870',
  '28/08/2016 12:55:16',
  '0.731',
  '28/08/2016 12:55:18',
  'True',
  '14.065'),
 ('28/08/2016 13:00:07',
  '0.664',
  '28/08/2016 13:00:13',
  '4.140',
  '28/08/2016 13:00:18',
  '1.544',
  '28/08/2016 13:00:19',
  'True',
  '14.988'),
 ('28/08/2016 13:05:06',
  '0.658',
  '28/08/2016 13:05:12',
  '3.710',
  '28/08/2016 13:05:16',
  '1.466',
  '28/08/2016 13:05:18',
  'True',
  '13.917'),
 ('28/08/2016 13:10:06',
  '0.669',
  '28/08/2016 13:10:13',
  '4.027',
  '28/08/2016 13:10:16',
  '0.719',
  '28/08/2016 13:10:18',
  'True',
  '13.526'),
 ('28/08/2016 13:15:07',
  '0.660',
  '28/08/2016 13:15:14',
  '4.444',
  '28/08/2016 13:15:17',
  '0.728',
  '28/08/2016 13:15:19',
  'True',
  '14.519'),
 ('28/08/2016 13:20:06',
  '0.654',
  '28/08/2016 13:20:13',
  '4.468',
  '28/08/2016 13:20:16',
  '0.730',
  '28/08/2016 13:20:18',
  'True',
  '13.796'),
 ('28/08/2016 13:25:06',
  '0.658',
  '28/08/2016 13:25:13',
  '3.988',
  '28/08/2016 13:25:17',
  '0.769',
  '28/08/2016 13:25:18',
  'True',
  '14.151'),
 ('28/08/2016 13:30:07',
  '0.664',
  '28/08/2016 13:30:13',
  '4.490',
  '28/08/2016 13:30:16',
  '0.749',
  '28/08/2016 13:30:18',
  'True',
  '13.270'),
 ('28/08/2016 13:35:06',
  '0.663',
  '28/08/2016 13:35:12',
  '3.554',
  '28/08/2016 13:35:15',
  '0.720',
  '28/08/2016 13:35:16',
  'True',
  '12.561'),
 ('28/08/2016 13:40:06',
  '0.658',
  '28/08/2016 13:40:12',
  '3.563',
  '28/08/2016 13:40:15',
  '0.811',
  '28/08/2016 13:40:17',
  'True',
  '13.558'),
 ('28/08/2016 13:45:07',
  '0.671',
  '28/08/2016 13:45:15',
  '5.475',
  '28/08/2016 13:45:19',
  '0.954',
  '28/08/2016 13:45:21',
  'True',
  '16.398'),
 ('28/08/2016 13:50:07',
  '0.665',
  '28/08/2016 13:50:14',
  '4.956',
  '28/08/2016 13:50:17',
  '0.718',
  '28/08/2016 13:50:18',
  'True',
  '13.817'),
 ('28/08/2016 13:55:06',
  '0.662',
  '28/08/2016 13:55:13',
  '4.713',
  '28/08/2016 13:55:16',
  '0.714',
  '28/08/2016 13:55:17',
  'True',
  '13.453'),
 ('28/08/2016 14:00:06',
  '0.665',
  '28/08/2016 14:00:13',
  '3.579',
  '28/08/2016 14:00:16',
  '0.752',
  '28/08/2016 14:00:17',
  'True',
  '12.664'),
 ('28/08/2016 14:05:06',
  '0.650',
  '28/08/2016 14:05:12',
  '3.982',
  '28/08/2016 14:05:16',
  '0.727',
  '28/08/2016 14:05:17',
  'True',
  '13.197'),
 ('28/08/2016 14:10:06',
  '0.662',
  '28/08/2016 14:10:12',
  '3.480',
  '28/08/2016 14:10:16',
  '1.087',
  '28/08/2016 14:10:17',
  'True',
  '13.157'),
 ('28/08/2016 14:15:06',
  '0.673',
  '28/08/2016 14:15:14',
  '5.355',
  '28/08/2016 14:15:17',
  '0.760',
  '28/08/2016 14:15:19',
  'True',
  '15.013'),
 ('28/08/2016 14:20:06',
  '0.657',
  '28/08/2016 14:20:13',
  '4.278',
  '28/08/2016 14:20:17',
  '0.734',
  '28/08/2016 14:20:18',
  'True',
  '13.781'),
 ('28/08/2016 14:25:06',
  '0.658',
  '28/08/2016 14:25:12',
  '4.418',
  '28/08/2016 14:25:16',
  '1.014',
  '28/08/2016 14:25:19',
  'True',
  '15.667'),
 ('28/08/2016 14:30:06',
  '0.658',
  '28/08/2016 14:30:12',
  '3.735',
  '28/08/2016 14:30:17',
  '0.746',
  '28/08/2016 14:30:18',
  'True',
  '14.374'),
 ('28/08/2016 14:35:06',
  '0.646',
  '28/08/2016 14:35:13',
  '3.844',
  '28/08/2016 14:35:18',
  '1.252',
  '28/08/2016 14:35:20',
  'True',
  '15.547'),
 ('28/08/2016 14:40:07',
  '0.649',
  '28/08/2016 14:40:13',
  '4.301',
  '28/08/2016 14:40:18',
  '0.809',
  '28/08/2016 14:40:19',
  'True',
  '15.032'),
 ('28/08/2016 14:45:07',
  '0.661',
  '28/08/2016 14:45:13',
  '3.568',
  '28/08/2016 14:45:17',
  '0.732',
  '28/08/2016 14:45:19',
  'True',
  '13.648'),
 ('28/08/2016 14:50:06',
  '0.667',
  '28/08/2016 14:50:12',
  '4.065',
  '28/08/2016 14:50:16',
  '1.240',
  '28/08/2016 14:50:19',
  'True',
  '14.898'),
 ('28/08/2016 14:55:06',
  '0.675',
  '28/08/2016 14:55:13',
  '4.529',
  '28/08/2016 14:55:17',
  '1.137',
  '28/08/2016 14:55:19',
  'True',
  '15.165'),
 ('28/08/2016 15:00:06',
  '0.667',
  '28/08/2016 15:00:13',
  '4.756',
  '28/08/2016 15:00:17',
  '0.750',
  '28/08/2016 15:00:18',
  'True',
  '14.172'),
 ('28/08/2016 15:05:06',
  '0.670',
  '28/08/2016 15:05:13',
  '4.460',
  '28/08/2016 15:05:17',
  '0.815',
  '28/08/2016 15:05:18',
  'True',
  '14.094'),
 ('28/08/2016 15:10:06',
  '0.664',
  '28/08/2016 15:10:13',
  '4.401',
  '28/08/2016 15:10:17',
  '0.856',
  '28/08/2016 15:10:19',
  'True',
  '14.886'),
 ('28/08/2016 15:15:07',
  '0.648',
  '28/08/2016 15:15:13',
  '3.657',
  '28/08/2016 15:15:16',
  '0.934',
  '28/08/2016 15:15:18',
  'True',
  '13.587'),
 ('28/08/2016 15:20:06',
  '0.662',
  '28/08/2016 15:20:13',
  '4.241',
  '28/08/2016 15:20:17',
  '1.041',
  '28/08/2016 15:20:19',
  'True',
  '14.277'),
 ('28/08/2016 15:25:06',
  '0.651',
  '28/08/2016 15:25:13',
  '4.009',
  '28/08/2016 15:25:16',
  '0.727',
  '28/08/2016 15:25:17',
  'True',
  '13.080'),
 ('28/08/2016 15:30:07',
  '0.666',
  '28/08/2016 15:30:13',
  '4.166',
  '28/08/2016 15:30:16',
  '0.724',
  '28/08/2016 15:30:18',
  'True',
  '13.002'),
 ('28/08/2016 15:35:06',
  '0.657',
  '28/08/2016 15:35:13',
  '3.808',
  '28/08/2016 15:35:16',
  '0.713',
  '28/08/2016 15:35:17',
  'True',
  '12.835'),
 ('28/08/2016 15:40:06',
  '0.660',
  '28/08/2016 15:40:12',
  '3.919',
  '28/08/2016 15:40:16',
  '0.737',
  '28/08/2016 15:40:18',
  'True',
  '13.896'),
 ('28/08/2016 15:45:06',
  '0.664',
  '28/08/2016 15:45:12',
  '3.666',
  '28/08/2016 15:45:16',
  '1.217',
  '28/08/2016 15:45:18',
  'True',
  '13.646'),
 ('28/08/2016 15:50:06',
  '0.664',
  '28/08/2016 15:50:12',
  '4.321',
  '28/08/2016 15:50:17',
  '0.731',
  '28/08/2016 15:50:19',
  'True',
  '15.398'),
 ('28/08/2016 15:55:06',
  '0.679',
  '28/08/2016 15:55:13',
  '4.291',
  '28/08/2016 15:55:17',
  '0.717',
  '28/08/2016 15:55:19',
  'True',
  '14.680'),
 ('28/08/2016 16:00:07',
  '0.622',
  '28/08/2016 16:00:13',
  '4.264',
  '28/08/2016 16:00:16',
  '0.986',
  '28/08/2016 16:00:18',
  'True',
  '13.798'),
 ('28/08/2016 16:05:06',
  '0.644',
  '28/08/2016 16:05:12',
  '4.308',
  '28/08/2016 16:05:17',
  '0.697',
  '28/08/2016 16:05:18',
  'True',
  '14.075'),
 ('28/08/2016 16:10:06',
  '0.644',
  '28/08/2016 16:10:14',
  '4.873',
  '28/08/2016 16:10:17',
  '0.700',
  '28/08/2016 16:10:19',
  'True',
  '14.516'),
 ('28/08/2016 16:15:06',
  '0.631',
  '28/08/2016 16:15:13',
  '4.373',
  '28/08/2016 16:15:16',
  '0.684',
  '28/08/2016 16:15:18',
  'True',
  '13.951'),
 ('28/08/2016 16:20:07',
  '0.633',
  '28/08/2016 16:20:14',
  '4.728',
  '28/08/2016 16:20:17',
  '0.713',
  '28/08/2016 16:20:19',
  'True',
  '14.105'),
 ('28/08/2016 16:25:07',
  '0.641',
  '28/08/2016 16:25:13',
  '3.595',
  '28/08/2016 16:25:17',
  '0.781',
  '28/08/2016 16:25:18',
  'True',
  '13.413'),
 ('28/08/2016 16:30:06',
  '0.628',
  '28/08/2016 16:30:12',
  '4.346',
  '28/08/2016 16:30:16',
  '0.733',
  '28/08/2016 16:30:19',
  'True',
  '14.689'),
 ('28/08/2016 16:35:06',
  '0.636',
  '28/08/2016 16:35:14',
  '4.735',
  '28/08/2016 16:35:18',
  '0.698',
  '28/08/2016 16:35:19',
  'True',
  '14.480'),
 ('28/08/2016 16:40:07',
  '0.633',
  '28/08/2016 16:40:14',
  '4.488',
  '28/08/2016 16:40:17',
  '0.698',
  '28/08/2016 16:40:19',
  'True',
  '13.987'),
 ('28/08/2016 16:45:06',
  '0.644',
  '28/08/2016 16:45:13',
  '4.080',
  '28/08/2016 16:45:16',
  '0.693',
  '28/08/2016 16:45:17',
  'True',
  '13.117'),
 ('28/08/2016 16:50:06',
  '0.634',
  '28/08/2016 16:50:12',
  '4.520',
  '28/08/2016 16:50:16',
  '0.858',
  '28/08/2016 16:50:18',
  'True',
  '14.412'),
 ('28/08/2016 16:55:06',
  '0.623',
  '28/08/2016 16:55:11',
  '3.525',
  '28/08/2016 16:55:14',
  '0.686',
  '28/08/2016 16:55:16',
  'True',
  '12.127'),
 ('28/08/2016 17:00:07',
  '0.632',
  '28/08/2016 17:00:13',
  '3.648',
  '28/08/2016 17:00:16',
  '0.675',
  '28/08/2016 17:00:17',
  'True',
  '12.738'),
 ('28/08/2016 17:05:06',
  '0.634',
  '28/08/2016 17:05:14',
  '5.804',
  '28/08/2016 17:05:20',
  '1.853',
  '28/08/2016 17:05:21',
  'True',
  '17.377'),
 ('28/08/2016 17:10:06',
  '0.623',
  '28/08/2016 17:10:14',
  '6.061',
  '28/08/2016 17:10:19',
  '1.431',
  '28/08/2016 17:10:20',
  'True',
  '16.434'),
 ('28/08/2016 17:15:07',
  '0.641',
  '28/08/2016 17:15:13',
  '4.341',
  '28/08/2016 17:15:16',
  '0.749',
  '28/08/2016 17:15:18',
  'True',
  '13.222'),
 ('28/08/2016 17:20:06',
  '0.633',
  '28/08/2016 17:20:14',
  '5.789',
  '28/08/2016 17:20:19',
  '1.078',
  '28/08/2016 17:20:21',
  'True',
  '16.950'),
 ('28/08/2016 17:25:06',
  '0.638',
  '28/08/2016 17:25:12',
  '3.573',
  '28/08/2016 17:25:15',
  '0.891',
  '28/08/2016 17:25:17',
  'True',
  '12.452'),
 ('28/08/2016 17:30:07',
  '0.631',
  '28/08/2016 17:30:13',
  '3.815',
  '28/08/2016 17:30:18',
  '1.128',
  '28/08/2016 17:30:19',
  'True',
  '14.157'),
 ('28/08/2016 17:35:06',
  '0.641',
  '28/08/2016 17:35:13',
  '3.949',
  '28/08/2016 17:35:16',
  '0.695',
  '28/08/2016 17:35:18',
  'True',
  '13.398'),
 ('28/08/2016 17:40:07',
  '0.637',
  '28/08/2016 17:40:13',
  '3.959',
  '28/08/2016 17:40:18',
  '1.328',
  '28/08/2016 17:40:21',
  'True',
  '16.533'),
 ('28/08/2016 17:45:06',
  '0.630',
  '28/08/2016 17:45:13',
  '5.223',
  '28/08/2016 17:45:18',
  '1.085',
  '28/08/2016 17:45:20',
  'True',
  '15.836'),
 ('28/08/2016 17:50:07',
  '0.627',
  '28/08/2016 17:50:13',
  '4.084',
  '28/08/2016 17:50:16',
  '0.695',
  '28/08/2016 17:50:18',
  'True',
  '13.625'),
 ('28/08/2016 17:55:06',
  '0.645',
  '28/08/2016 17:55:12',
  '3.923',
  '28/08/2016 17:55:16',
  '1.169',
  '28/08/2016 17:55:18',
  'True',
  '14.147'),
 ('28/08/2016 18:00:06',
  '0.630',
  '28/08/2016 18:00:12',
  '3.962',
  '28/08/2016 18:00:16',
  '0.864',
  '28/08/2016 18:00:18',
  'True',
  '13.735'),
 ('28/08/2016 18:05:07',
  '0.630',
  '28/08/2016 18:05:13',
  '3.761',
  '28/08/2016 18:05:18',
  '0.708',
  '28/08/2016 18:05:19',
  'True',
  '14.596'),
 ('28/08/2016 18:10:07',
  '0.637',
  '28/08/2016 18:10:14',
  '5.103',
  '28/08/2016 18:10:18',
  '0.794',
  '28/08/2016 18:10:20',
  'True',
  '15.346'),
 ('28/08/2016 18:15:06',
  '0.628',
  '28/08/2016 18:15:13',
  '4.717',
  '28/08/2016 18:15:16',
  '0.713',
  '28/08/2016 18:15:17',
  'True',
  '13.684'),
 ('28/08/2016 18:20:06',
  '0.647',
  '28/08/2016 18:20:12',
  '3.570',
  '28/08/2016 18:20:16',
  '0.688',
  '28/08/2016 18:20:17',
  'True',
  '12.628'),
 ('28/08/2016 18:25:07',
  '0.633',
  '28/08/2016 18:25:13',
  '3.565',
  '28/08/2016 18:25:16',
  '1.272',
  '28/08/2016 18:25:18',
  'True',
  '13.571'),
 ('28/08/2016 18:30:06',
  '0.633',
  '28/08/2016 18:30:13',
  '4.394',
  '28/08/2016 18:30:16',
  '0.754',
  '28/08/2016 18:30:18',
  'True',
  '13.702'),
 ('28/08/2016 18:35:07',
  '0.642',
  '28/08/2016 18:35:16',
  '5.895',
  '28/08/2016 18:35:19',
  '0.696',
  '28/08/2016 18:35:20',
  'True',
  '15.082'),
 ('28/08/2016 18:40:06',
  '0.628',
  '28/08/2016 18:40:12',
  '3.589',
  '28/08/2016 18:40:15',
  '0.689',
  '28/08/2016 18:40:17',
  'True',
  '12.798'),
 ('28/08/2016 18:45:07',
  '0.643',
  '28/08/2016 18:45:13',
  '4.653',
  '28/08/2016 18:45:17',
  '0.717',
  '28/08/2016 18:45:18',
  'True',
  '13.961'),
 ('28/08/2016 18:50:06',
  '0.636',
  '28/08/2016 18:50:13',
  '4.533',
  '28/08/2016 18:50:18',
  '0.723',
  '28/08/2016 18:50:20',
  'True',
  '16.064'),
 ('28/08/2016 18:55:06',
  '0.633',
  '28/08/2016 18:55:12',
  '3.623',
  '28/08/2016 18:55:17',
  '1.398',
  '28/08/2016 18:55:19',
  'True',
  '14.999'),
 ('28/08/2016 19:00:06',
  '0.640',
  '28/08/2016 19:00:13',
  '4.178',
  '28/08/2016 19:00:17',
  '0.946',
  '28/08/2016 19:00:19',
  'True',
  '14.626'),
 ('28/08/2016 19:05:06',
  '0.623',
  '28/08/2016 19:05:14',
  '4.096',
  '28/08/2016 19:05:18',
  '1.020',
  '28/08/2016 19:05:19',
  'True',
  '15.574'),
 ('28/08/2016 19:10:06',
  '0.637',
  '28/08/2016 19:10:14',
  '4.986',
  '28/08/2016 19:10:17',
  '0.691',
  '28/08/2016 19:10:19',
  'True',
  '14.418'),
 ('28/08/2016 19:15:07',
  '0.635',
  '28/08/2016 19:15:13',
  '4.380',
  '28/08/2016 19:15:16',
  '0.718',
  '28/08/2016 19:15:17',
  'True',
  '13.176'),
 ('28/08/2016 19:20:07',
  '0.637',
  '28/08/2016 19:20:13',
  '4.007',
  '28/08/2016 19:20:16',
  '0.739',
  '28/08/2016 19:20:17',
  'True',
  '12.712'),
 ('28/08/2016 19:25:06',
  '0.635',
  '28/08/2016 19:25:13',
  '4.241',
  '28/08/2016 19:25:17',
  '0.695',
  '28/08/2016 19:25:18',
  'True',
  '14.242'),
 ('28/08/2016 19:30:07',
  '0.622',
  '28/08/2016 19:30:12',
  '3.622',
  '28/08/2016 19:30:17',
  '0.740',
  '28/08/2016 19:30:19',
  'True',
  '14.561'),
 ('28/08/2016 19:35:06',
  '0.633',
  '28/08/2016 19:35:13',
  '4.570',
  '28/08/2016 19:35:18',
  '0.714',
  '28/08/2016 19:35:19',
  'True',
  '14.846'),
 ('28/08/2016 19:40:06',
  '0.636',
  '28/08/2016 19:40:12',
  '3.516',
  '28/08/2016 19:40:16',
  '1.025',
  '28/08/2016 19:40:18',
  'True',
  '13.802'),
 ('28/08/2016 19:45:06',
  '0.633',
  '28/08/2016 19:45:13',
  '5.151',
  '28/08/2016 19:45:16',
  '0.708',
  '28/08/2016 19:45:18',
  'True',
  '13.955'),
 ('28/08/2016 19:50:07',
  '0.642',
  '28/08/2016 19:50:13',
  '4.219',
  '28/08/2016 19:50:16',
  '0.693',
  '28/08/2016 19:50:17',
  'True',
  '12.939'),
 ('28/08/2016 19:55:06',
  '0.630',
  '28/08/2016 19:55:12',
  '3.946',
  '28/08/2016 19:55:16',
  '0.684',
  '28/08/2016 19:55:18',
  'True',
  '13.601'),
 ('28/08/2016 20:00:07',
  '0.628',
  '28/08/2016 20:00:13',
  '3.681',
  '28/08/2016 20:00:16',
  '0.707',
  '28/08/2016 20:00:17',
  'True',
  '12.718'),
 ('28/08/2016 20:05:06',
  '0.633',
  '28/08/2016 20:05:12',
  '4.061',
  '28/08/2016 20:05:17',
  '0.747',
  '28/08/2016 20:05:19',
  'True',
  '14.629'),
 ('28/08/2016 20:10:07',
  '0.643',
  '28/08/2016 20:10:14',
  '5.461',
  '28/08/2016 20:10:18',
  '0.713',
  '28/08/2016 20:10:20',
  'True',
  '15.108'),
 ('28/08/2016 20:15:07',
  '0.631',
  '28/08/2016 20:15:14',
  '4.846',
  '28/08/2016 20:15:18',
  '0.689',
  '28/08/2016 20:15:19',
  'True',
  '14.604'),
 ('28/08/2016 20:20:06',
  '0.618',
  '28/08/2016 20:20:13',
  '4.502',
  '28/08/2016 20:20:16',
  '0.711',
  '28/08/2016 20:20:18',
  'True',
  '13.466'),
 ('28/08/2016 20:25:07',
  '0.634',
  '28/08/2016 20:25:13',
  '4.158',
  '28/08/2016 20:25:17',
  '0.706',
  '28/08/2016 20:25:18',
  'True',
  '13.372'),
 ('28/08/2016 20:30:06',
  '0.635',
  '28/08/2016 20:30:14',
  '5.768',
  '28/08/2016 20:30:17',
  '0.688',
  '28/08/2016 20:30:19',
  'True',
  '14.433'),
 ('28/08/2016 20:35:06',
  '0.634',
  '28/08/2016 20:35:12',
  '3.572',
  '28/08/2016 20:35:15',
  '0.700',
  '28/08/2016 20:35:17',
  'True',
  '12.471'),
 ('28/08/2016 20:40:06',
  '0.633',
  '28/08/2016 20:40:12',
  '3.667',
  '28/08/2016 20:40:16',
  '0.908',
  '28/08/2016 20:40:17',
  'True',
  '13.005'),
 ('28/08/2016 20:45:07',
  '0.627',
  '28/08/2016 20:45:12',
  '3.581',
  '28/08/2016 20:45:16',
  '0.705',
  '28/08/2016 20:45:18',
  'True',
  '12.899'),
 ('28/08/2016 20:50:07',
  '0.636',
  '28/08/2016 20:50:12',
  '3.702',
  '28/08/2016 20:50:16',
  '0.834',
  '28/08/2016 20:50:17',
  'True',
  '12.967'),
 ('28/08/2016 20:55:06',
  '0.636',
  '28/08/2016 20:55:13',
  '5.146',
  '28/08/2016 20:55:18',
  '0.876',
  '28/08/2016 20:55:20',
  'True',
  '15.909'),
 ('28/08/2016 21:00:07',
  '0.623',
  '28/08/2016 21:00:14',
  '5.114',
  '28/08/2016 21:00:18',
  '0.734',
  '28/08/2016 21:00:20',
  'True',
  '15.596'),
 ('28/08/2016 21:05:06',
  '0.654',
  '28/08/2016 21:05:12',
  '4.333',
  '28/08/2016 21:05:15',
  '0.706',
  '28/08/2016 21:05:17',
  'True',
  '12.890'),
 ('28/08/2016 21:10:07',
  '0.634',
  '28/08/2016 21:10:12',
  '3.570',
  '28/08/2016 21:10:15',
  '0.715',
  '28/08/2016 21:10:17',
  'True',
  '12.747'),
 ('28/08/2016 21:15:07',
  '0.635',
  '28/08/2016 21:15:12',
  '3.599',
  '28/08/2016 21:15:16',
  '1.008',
  '28/08/2016 21:15:17',
  'True',
  '12.724'),
 ('28/08/2016 21:20:06',
  '0.635',
  '28/08/2016 21:20:12',
  '4.011',
  '28/08/2016 21:20:16',
  '0.693',
  '28/08/2016 21:20:17',
  'True',
  '13.296'),
 ('28/08/2016 21:25:06',
  '0.632',
  '28/08/2016 21:25:13',
  '4.944',
  '28/08/2016 21:25:17',
  '1.004',
  '28/08/2016 21:25:20',
  'True',
  '16.040'),
 ('28/08/2016 21:30:06',
  '0.635',
  '28/08/2016 21:30:14',
  '4.966',
  '28/08/2016 21:30:17',
  '0.790',
  '28/08/2016 21:30:18',
  'True',
  '14.240'),
 ('28/08/2016 21:35:06',
  '0.623',
  '28/08/2016 21:35:15',
  '6.001',
  '28/08/2016 21:35:19',
  '1.145',
  '28/08/2016 21:35:21',
  'True',
  '17.356'),
 ('28/08/2016 21:40:07',
  '0.637',
  '28/08/2016 21:40:16',
  '7.055',
  '28/08/2016 21:40:20',
  '0.825',
  '28/08/2016 21:40:21',
  'True',
  '17.173'),
 ('28/08/2016 21:45:07',
  '0.636',
  '28/08/2016 21:45:12',
  '3.660',
  '28/08/2016 21:45:16',
  '0.725',
  '28/08/2016 21:45:17',
  'True',
  '12.713'),
 ('28/08/2016 21:50:06',
  '0.633',
  '28/08/2016 21:50:13',
  '4.803',
  '28/08/2016 21:50:18',
  '1.372',
  '28/08/2016 21:50:21',
  'True',
  '16.540'),
 ('28/08/2016 21:55:07',
  '0.635',
  '28/08/2016 21:55:12',
  '3.575',
  '28/08/2016 21:55:16',
  '0.847',
  '28/08/2016 21:55:18',
  'True',
  '13.232'),
 ('28/08/2016 22:00:07',
  '0.628',
  '28/08/2016 22:00:13',
  '4.205',
  '28/08/2016 22:00:16',
  '0.682',
  '28/08/2016 22:00:17',
  'True',
  '12.692'),
 ('28/08/2016 22:05:06',
  '0.632',
  '28/08/2016 22:05:15',
  '5.945',
  '28/08/2016 22:05:19',
  '0.685',
  '28/08/2016 22:05:20',
  'True',
  '16.008'),
 ('28/08/2016 22:10:07',
  '0.636',
  '28/08/2016 22:10:14',
  '3.976',
  '28/08/2016 22:10:17',
  '0.698',
  '28/08/2016 22:10:18',
  'True',
  '14.019'),
 ('28/08/2016 22:15:07',
  '0.634',
  '28/08/2016 22:15:13',
  '4.297',
  '28/08/2016 22:15:16',
  '0.680',
  '28/08/2016 22:15:17',
  'True',
  '13.008'),
 ('28/08/2016 22:20:07',
  '0.631',
  '28/08/2016 22:20:12',
  '3.526',
  '28/08/2016 22:20:16',
  '0.869',
  '28/08/2016 22:20:18',
  'True',
  '14.065'),
 ('28/08/2016 22:25:07',
  '0.635',
  '28/08/2016 22:25:13',
  '3.735',
  '28/08/2016 22:25:17',
  '0.712',
  '28/08/2016 22:25:18',
  'True',
  '13.599'),
 ('28/08/2016 22:30:06',
  '0.633',
  '28/08/2016 22:30:12',
  '4.216',
  '28/08/2016 22:30:16',
  '0.706',
  '28/08/2016 22:30:17',
  'True',
  '13.352'),
 ('28/08/2016 22:35:07',
  '0.631',
  '28/08/2016 22:35:13',
  '4.180',
  '28/08/2016 22:35:16',
  '0.688',
  '28/08/2016 22:35:18',
  'True',
  '13.072'),
 ('28/08/2016 22:40:07',
  '0.629',
  '28/08/2016 22:40:13',
  '4.086',
  '28/08/2016 22:40:19',
  '1.331',
  '28/08/2016 22:40:21',
  'True',
  '16.750'),
 ('28/08/2016 22:45:06',
  '0.644',
  '28/08/2016 22:45:12',
  '3.616',
  '28/08/2016 22:45:17',
  '0.753',
  '28/08/2016 22:45:18',
  'True',
  '14.332'),
 ('28/08/2016 22:50:07',
  '0.639',
  '28/08/2016 22:50:13',
  '3.598',
  '28/08/2016 22:50:16',
  '0.823',
  '28/08/2016 22:50:19',
  'True',
  '14.421'),
 ('28/08/2016 22:55:07',
  '0.642',
  '28/08/2016 22:55:12',
  '3.586',
  '28/08/2016 22:55:16',
  '0.742',
  '28/08/2016 22:55:18',
  'True',
  '13.912'),
 ('28/08/2016 23:00:06',
  '0.631',
  '28/08/2016 23:00:14',
  '5.243',
  '28/08/2016 23:00:17',
  '1.174',
  '28/08/2016 23:00:19',
  'True',
  '14.721'),
 ('28/08/2016 23:05:07',
  '0.625',
  '28/08/2016 23:05:14',
  '3.853',
  '28/08/2016 23:05:17',
  '0.685',
  '28/08/2016 23:05:18',
  'True',
  '13.090'),
 ('28/08/2016 23:10:07',
  '0.618',
  '28/08/2016 23:10:13',
  '3.902',
  '28/08/2016 23:10:17',
  '0.718',
  '28/08/2016 23:10:19',
  'True',
  '14.492'),
 ('28/08/2016 23:15:06',
  '0.658',
  '28/08/2016 23:15:12',
  '3.935',
  '28/08/2016 23:15:16',
  '0.953',
  '28/08/2016 23:15:17',
  'True',
  '13.689'),
 ('28/08/2016 23:20:07',
  '0.618',
  '28/08/2016 23:20:13',
  '3.549',
  '28/08/2016 23:20:16',
  '0.690',
  '28/08/2016 23:20:17',
  'True',
  '11.966'),
 ('28/08/2016 23:25:06',
  '0.626',
  '28/08/2016 23:25:12',
  '3.931',
  '28/08/2016 23:25:18',
  '1.049',
  '28/08/2016 23:25:20',
  'True',
  '16.118'),
 ('28/08/2016 23:30:07',
  '0.634',
  '28/08/2016 23:30:13',
  '3.695',
  '28/08/2016 23:30:17',
  '0.795',
  '28/08/2016 23:30:18',
  'True',
  '13.648'),
 ('28/08/2016 23:35:07',
  '0.628',
  '28/08/2016 23:35:13',
  '4.012',
  '28/08/2016 23:35:16',
  '1.322',
  '28/08/2016 23:35:18',
  'True',
  '13.507'),
 ('28/08/2016 23:40:07',
  '0.628',
  '28/08/2016 23:40:13',
  '4.469',
  '28/08/2016 23:40:17',
  '0.834',
  '28/08/2016 23:40:18',
  'True',
  '13.841'),
 ('28/08/2016 23:45:06',
  '0.622',
  '28/08/2016 23:45:13',
  '4.050',
  '28/08/2016 23:45:17',
  '0.730',
  '28/08/2016 23:45:18',
  'True',
  '14.112'),
 ('28/08/2016 23:50:06',
  '0.640',
  '28/08/2016 23:50:12',
  '3.896',
  '28/08/2016 23:50:16',
  '0.937',
  '28/08/2016 23:50:17',
  'True',
  '13.393'),
 ('28/08/2016 23:55:06',
  '0.641',
  '28/08/2016 23:55:14',
  '5.029',
  '28/08/2016 23:55:18',
  '1.037',
  '28/08/2016 23:55:19',
  'True',
  '14.858'),
 ('29/08/2016 00:00:07',
  '0.636',
  '29/08/2016 00:00:14',
  '4.917',
  '29/08/2016 00:00:18',
  '0.695',
  '29/08/2016 00:00:20',
  'True',
  '14.566'),
 ('29/08/2016 00:05:07',
  '0.636',
  '29/08/2016 00:05:13',
  '4.174',
  '29/08/2016 00:05:16',
  '0.703',
  '29/08/2016 00:05:18',
  'True',
  '13.284'),
 ('29/08/2016 00:10:06',
  '0.624',
  '29/08/2016 00:10:13',
  '4.146',
  '29/08/2016 00:10:16',
  '0.696',
  '29/08/2016 00:10:17',
  'True',
  '13.069'),
 ('29/08/2016 00:15:07',
  '0.634',
  '29/08/2016 00:15:13',
  '4.255',
  '29/08/2016 00:15:16',
  '0.711',
  '29/08/2016 00:15:18',
  'True',
  '13.175'),
 ('29/08/2016 00:20:07',
  '0.636',
  '29/08/2016 00:20:14',
  '5.086',
  '29/08/2016 00:20:17',
  '0.701',
  '29/08/2016 00:20:18',
  'True',
  '13.755'),
 ('29/08/2016 00:25:06',
  '0.633',
  '29/08/2016 00:25:13',
  '4.131',
  '29/08/2016 00:25:17',
  '1.168',
  '29/08/2016 00:25:20',
  'True',
  '15.560'),
 ('29/08/2016 00:30:07',
  '0.635',
  '29/08/2016 00:30:12',
  '3.546',
  '29/08/2016 00:30:16',
  '0.887',
  '29/08/2016 00:30:17',
  'True',
  '12.624'),
 ('29/08/2016 00:35:06',
  '0.632',
  '29/08/2016 00:35:13',
  '4.356',
  '29/08/2016 00:35:18',
  '1.298',
  '29/08/2016 00:35:20',
  'True',
  '15.892'),
 ('29/08/2016 00:40:06',
  '0.631',
  '29/08/2016 00:40:12',
  '4.011',
  '29/08/2016 00:40:15',
  '0.692',
  '29/08/2016 00:40:16',
  'True',
  '12.428'),
 ('29/08/2016 00:45:06',
  '0.630',
  '29/08/2016 00:45:12',
  '4.253',
  '29/08/2016 00:45:16',
  '0.692',
  '29/08/2016 00:45:17',
  'True',
  '13.196'),
 ('29/08/2016 00:50:05',
  '0.644',
  '29/08/2016 00:50:11',
  '3.780',
  '29/08/2016 00:50:14',
  '0.704',
  '29/08/2016 00:50:15',
  'True',
  '11.877'),
 ('29/08/2016 00:55:06',
  '0.632',
  '29/08/2016 00:55:13',
  '5.361',
  '29/08/2016 00:55:18',
  '1.754',
  '29/08/2016 00:55:20',
  'True',
  '15.914'),
 ('29/08/2016 01:00:06',
  '0.631',
  '29/08/2016 01:00:12',
  '4.213',
  '29/08/2016 01:00:16',
  '1.201',
  '29/08/2016 01:00:18',
  'True',
  '14.708'),
 ('29/08/2016 01:05:06',
  '0.641',
  '29/08/2016 01:05:13',
  '5.010',
  '29/08/2016 01:05:17',
  '0.693',
  '29/08/2016 01:05:19',
  'True',
  '14.848'),
 ('29/08/2016 01:10:06',
  '0.634',
  '29/08/2016 01:10:12',
  '3.637',
  '29/08/2016 01:10:17',
  '0.747',
  '29/08/2016 01:10:18',
  'True',
  '14.039'),
 ('29/08/2016 01:15:06',
  '0.633',
  '29/08/2016 01:15:12',
  '3.996',
  '29/08/2016 01:15:15',
  '0.715',
  '29/08/2016 01:15:17',
  'True',
  '13.305'),
 ('29/08/2016 01:20:06',
  '0.628',
  '29/08/2016 01:20:13',
  '3.972',
  '29/08/2016 01:20:17',
  '0.763',
  '29/08/2016 01:20:18',
  'True',
  '13.346'),
 ('29/08/2016 01:25:07',
  '0.627',
  '29/08/2016 01:25:12',
  '3.581',
  '29/08/2016 01:25:16',
  '1.219',
  '29/08/2016 01:25:17',
  'True',
  '12.385'),
 ('29/08/2016 01:30:06',
  '0.636',
  '29/08/2016 01:30:12',
  '3.985',
  '29/08/2016 01:30:17',
  '1.011',
  '29/08/2016 01:30:19',
  'True',
  '14.497'),
 ('29/08/2016 01:35:06',
  '0.629',
  '29/08/2016 01:35:13',
  '4.383',
  '29/08/2016 01:35:17',
  '0.727',
  '29/08/2016 01:35:18',
  'True',
  '14.066'),
 ('29/08/2016 01:40:07',
  '0.630',
  '29/08/2016 01:40:12',
  '3.635',
  '29/08/2016 01:40:16',
  '0.735',
  '29/08/2016 01:40:18',
  'True',
  '13.231'),
 ('29/08/2016 01:45:06',
  '0.629',
  '29/08/2016 01:45:12',
  '3.708',
  '29/08/2016 01:45:15',
  '0.691',
  '29/08/2016 01:45:16',
  'True',
  '12.279'),
 ('29/08/2016 01:50:06',
  '0.629',
  '29/08/2016 01:50:12',
  '4.255',
  '29/08/2016 01:50:16',
  '0.884',
  '29/08/2016 01:50:17',
  'True',
  '13.242'),
 ('29/08/2016 01:55:06',
  '0.630',
  '29/08/2016 01:55:12',
  '3.783',
  '29/08/2016 01:55:15',
  '0.688',
  '29/08/2016 01:55:16',
  'True',
  '12.436'),
 ('29/08/2016 02:00:06',
  '0.624',
  '29/08/2016 02:00:14',
  '5.327',
  '29/08/2016 02:00:17',
  '0.678',
  '29/08/2016 02:00:19',
  'True',
  '14.438'),
 ('29/08/2016 02:05:06',
  '0.626',
  '29/08/2016 02:05:12',
  '3.688',
  '29/08/2016 02:05:15',
  '0.792',
  '29/08/2016 02:05:18',
  'True',
  '13.461'),
 ('29/08/2016 02:10:06',
  '0.626',
  '29/08/2016 02:10:14',
  '5.379',
  '29/08/2016 02:10:17',
  '0.687',
  '29/08/2016 02:10:18',
  'True',
  '14.093'),
 ('29/08/2016 02:15:06',
  '0.626',
  '29/08/2016 02:15:12',
  '3.987',
  '29/08/2016 02:15:15',
  '0.712',
  '29/08/2016 02:15:17',
  'True',
  '12.491'),
 ('29/08/2016 02:20:06',
  '0.630',
  '29/08/2016 02:20:13',
  '4.453',
  '29/08/2016 02:20:16',
  '0.887',
  '29/08/2016 02:20:18',
  'True',
  '13.498'),
 ('29/08/2016 02:25:06',
  '0.630',
  '29/08/2016 02:25:13',
  '4.736',
  '29/08/2016 02:25:16',
  '0.683',
  '29/08/2016 02:25:17',
  'True',
  '13.399'),
 ('29/08/2016 02:30:06',
  '0.650',
  '29/08/2016 02:30:13',
  '4.351',
  '29/08/2016 02:30:17',
  '1.173',
  '29/08/2016 02:30:18',
  'True',
  '14.225'),
 ('29/08/2016 02:35:06',
  '0.629',
  '29/08/2016 02:35:12',
  '3.917',
  '29/08/2016 02:35:15',
  '0.788',
  '29/08/2016 02:35:17',
  'True',
  '13.105'),
 ('29/08/2016 02:40:07',
  '0.631',
  '29/08/2016 02:40:13',
  '3.801',
  '29/08/2016 02:40:16',
  '0.699',
  '29/08/2016 02:40:18',
  'True',
  '13.481'),
 ('29/08/2016 02:45:06',
  '0.631',
  '29/08/2016 02:45:12',
  '3.541',
  '29/08/2016 02:45:17',
  '0.708',
  '29/08/2016 02:45:18',
  'True',
  '13.664'),
 ('29/08/2016 02:50:06',
  '0.627',
  '29/08/2016 02:50:12',
  '3.787',
  '29/08/2016 02:50:15',
  '0.914',
  '29/08/2016 02:50:17',
  'True',
  '13.462'),
 ('29/08/2016 02:55:06',
  '0.631',
  '29/08/2016 02:55:13',
  '4.577',
  '29/08/2016 02:55:16',
  '0.712',
  '29/08/2016 02:55:18',
  'True',
  '13.540'),
 ('29/08/2016 03:00:06',
  '0.622',
  '29/08/2016 03:00:13',
  '3.736',
  '29/08/2016 03:00:17',
  '0.707',
  '29/08/2016 03:00:19',
  'True',
  '14.440'),
 ('29/08/2016 03:05:06',
  '0.628',
  '29/08/2016 03:05:11',
  '3.507',
  '29/08/2016 03:05:15',
  '0.683',
  '29/08/2016 03:05:17',
  'True',
  '13.110'),
 ('29/08/2016 03:10:06',
  '0.628',
  '29/08/2016 03:10:12',
  '4.137',
  '29/08/2016 03:10:15',
  '0.706',
  '29/08/2016 03:10:17',
  'True',
  '12.583'),
 ('29/08/2016 03:15:06',
  '0.631',
  '29/08/2016 03:15:11',
  '3.538',
  '29/08/2016 03:15:15',
  '0.895',
  '29/08/2016 03:15:16',
  'True',
  '12.260'),
 ('29/08/2016 03:20:06',
  '0.625',
  '29/08/2016 03:20:12',
  '4.169',
  '29/08/2016 03:20:16',
  '0.868',
  '29/08/2016 03:20:18',
  'True',
  '13.805'),
 ('29/08/2016 03:25:06',
  '0.626',
  '29/08/2016 03:25:12',
  '3.951',
  '29/08/2016 03:25:17',
  '1.819',
  '29/08/2016 03:25:18',
  'True',
  '13.933'),
 ('29/08/2016 03:30:06',
  '0.633',
  '29/08/2016 03:30:13',
  '4.162',
  '29/08/2016 03:30:16',
  '0.678',
  '29/08/2016 03:30:18',
  'True',
  '13.562'),
 ('29/08/2016 03:35:06',
  '0.655',
  '29/08/2016 03:35:12',
  '3.547',
  '29/08/2016 03:35:15',
  '0.814',
  '29/08/2016 03:35:17',
  'True',
  '12.177'),
 ('29/08/2016 03:40:07',
  '0.639',
  '29/08/2016 03:40:12',
  '3.556',
  '29/08/2016 03:40:15',
  '0.690',
  '29/08/2016 03:40:17',
  'True',
  '11.702'),
 ('29/08/2016 03:45:06',
  '0.632',
  '29/08/2016 03:45:12',
  '3.846',
  '29/08/2016 03:45:16',
  '1.405',
  '29/08/2016 03:45:17',
  'True',
  '12.980'),
 ('29/08/2016 03:50:06',
  '0.632',
  '29/08/2016 03:50:12',
  '3.924',
  '29/08/2016 03:50:16',
  '0.688',
  '29/08/2016 03:50:17',
  'True',
  '13.112'),
 ('29/08/2016 03:55:06',
  '0.641',
  '29/08/2016 03:55:12',
  '3.728',
  '29/08/2016 03:55:15',
  '0.695',
  '29/08/2016 03:55:17',
  'True',
  '12.678'),
 ('29/08/2016 04:00:06',
  '0.617',
  '29/08/2016 04:00:12',
  '4.651',
  '29/08/2016 04:00:16',
  '0.684',
  '29/08/2016 04:00:17',
  'True',
  '13.265'),
 ('29/08/2016 04:05:06',
  '0.619',
  '29/08/2016 04:05:13',
  '4.025',
  '29/08/2016 04:05:17',
  '0.875',
  '29/08/2016 04:05:18',
  'True',
  '14.028'),
 ('29/08/2016 04:10:06',
  '0.625',
  '29/08/2016 04:10:12',
  '4.015',
  '29/08/2016 04:10:15',
  '0.684',
  '29/08/2016 04:10:17',
  'True',
  '13.172'),
 ('29/08/2016 04:15:06',
  '0.631',
  '29/08/2016 04:15:13',
  '5.375',
  '29/08/2016 04:15:17',
  '0.715',
  '29/08/2016 04:15:19',
  'True',
  '14.454'),
 ('29/08/2016 04:20:07',
  '0.639',
  '29/08/2016 04:20:13',
  '3.865',
  '29/08/2016 04:20:17',
  '1.419',
  '29/08/2016 04:20:18',
  'True',
  '13.328'),
 ('29/08/2016 04:25:06',
  '0.632',
  '29/08/2016 04:25:12',
  '3.552',
  '29/08/2016 04:25:16',
  '0.791',
  '29/08/2016 04:25:18',
  'True',
  '13.380'),
 ('29/08/2016 04:30:06',
  '0.632',
  '29/08/2016 04:30:13',
  '4.860',
  '29/08/2016 04:30:17',
  '0.685',
  '29/08/2016 04:30:18',
  'True',
  '14.740'),
 ('29/08/2016 04:35:06',
  '0.626',
  '29/08/2016 04:35:14',
  '5.633',
  '29/08/2016 04:35:18',
  '1.478',
  '29/08/2016 04:35:20',
  'True',
  '16.192'),
 ('29/08/2016 04:40:06',
  '0.630',
  '29/08/2016 04:40:12',
  '3.577',
  '29/08/2016 04:40:15',
  '0.695',
  '29/08/2016 04:40:17',
  'True',
  '13.125'),
 ('29/08/2016 04:45:06',
  '0.632',
  '29/08/2016 04:45:12',
  '3.620',
  '29/08/2016 04:45:16',
  '1.497',
  '29/08/2016 04:45:17',
  'True',
  '13.053'),
 ('29/08/2016 04:50:06',
  '0.626',
  '29/08/2016 04:50:12',
  '3.589',
  '29/08/2016 04:50:16',
  '0.835',
  '29/08/2016 04:50:17',
  'True',
  '12.971'),
 ('29/08/2016 04:55:06',
  '0.642',
  '29/08/2016 04:55:13',
  '4.563',
  '29/08/2016 04:55:17',
  '0.696',
  '29/08/2016 04:55:19',
  'True',
  '14.443'),
 ('29/08/2016 05:00:07',
  '0.624',
  '29/08/2016 05:00:14',
  '4.611',
  '29/08/2016 05:00:17',
  '0.843',
  '29/08/2016 05:00:19',
  'True',
  '14.655'),
 ('29/08/2016 05:05:06',
  '0.634',
  '29/08/2016 05:05:13',
  '4.975',
  '29/08/2016 05:05:16',
  '0.693',
  '29/08/2016 05:05:17',
  'True',
  '13.411'),
 ('29/08/2016 05:10:06',
  '0.622',
  '29/08/2016 05:10:13',
  '5.014',
  '29/08/2016 05:10:17',
  '0.732',
  '29/08/2016 05:10:18',
  'True',
  '14.360'),
 ('29/08/2016 05:15:06',
  '0.629',
  '29/08/2016 05:15:12',
  '3.552',
  '29/08/2016 05:15:15',
  '0.685',
  '29/08/2016 05:15:16',
  'True',
  '12.297'),
 ('29/08/2016 05:20:06',
  '0.619',
  '29/08/2016 05:20:13',
  '4.194',
  '29/08/2016 05:20:17',
  '1.143',
  '29/08/2016 05:20:18',
  'True',
  '14.215'),
 ('29/08/2016 05:25:06',
  '0.627',
  '29/08/2016 05:25:12',
  '3.706',
  '29/08/2016 05:25:16',
  '0.873',
  '29/08/2016 05:25:18',
  'True',
  '13.929'),
 ('29/08/2016 05:30:06',
  '0.627',
  '29/08/2016 05:30:14',
  '5.097',
  '29/08/2016 05:30:18',
  '0.907',
  '29/08/2016 05:30:19',
  'True',
  '14.992'),
 ('29/08/2016 05:35:06',
  '0.630',
  '29/08/2016 05:35:12',
  '3.985',
  '29/08/2016 05:35:16',
  '1.070',
  '29/08/2016 05:35:18',
  'True',
  '13.548'),
 ('29/08/2016 05:40:07',
  '0.638',
  '29/08/2016 05:40:13',
  '4.334',
  '29/08/2016 05:40:17',
  '0.695',
  '29/08/2016 05:40:18',
  'True',
  '13.124'),
 ('29/08/2016 05:45:06',
  '0.636',
  '29/08/2016 05:45:13',
  '3.962',
  '29/08/2016 05:45:17',
  '1.051',
  '29/08/2016 05:45:18',
  'True',
  '14.091'),
 ('29/08/2016 05:50:06',
  '0.658',
  '29/08/2016 05:50:14',
  '5.492',
  '29/08/2016 05:50:18',
  '1.490',
  '29/08/2016 05:50:20',
  'True',
  '15.633'),
 ('29/08/2016 05:55:06',
  '0.639',
  '29/08/2016 05:55:14',
  '5.605',
  '29/08/2016 05:55:18',
  '0.716',
  '29/08/2016 05:55:20',
  'True',
  '15.652'),
 ('29/08/2016 06:00:06',
  '0.636',
  '29/08/2016 06:00:12',
  '3.842',
  '29/08/2016 06:00:16',
  '0.676',
  '29/08/2016 06:00:18',
  'True',
  '13.939'),
 ('29/08/2016 06:05:06',
  '0.633',
  '29/08/2016 06:05:13',
  '4.530',
  '29/08/2016 06:05:16',
  '0.689',
  '29/08/2016 06:05:17',
  'True',
  '13.452'),
 ('29/08/2016 06:10:06',
  '0.634',
  '29/08/2016 06:10:13',
  '4.832',
  '29/08/2016 06:10:16',
  '0.693',
  '29/08/2016 06:10:18',
  'True',
  '13.576'),
 ('29/08/2016 06:15:06',
  '0.625',
  '29/08/2016 06:15:13',
  '4.669',
  '29/08/2016 06:15:17',
  '1.023',
  '29/08/2016 06:15:18',
  'True',
  '13.842'),
 ('29/08/2016 06:20:07',
  '0.643',
  '29/08/2016 06:20:14',
  '5.633',
  '29/08/2016 06:20:18',
  '0.768',
  '29/08/2016 06:20:19',
  'True',
  '14.791'),
 ('29/08/2016 06:25:07',
  '0.737',
  '29/08/2016 06:25:13',
  '3.554',
  '29/08/2016 06:25:17',
  '0.827',
  '29/08/2016 06:25:19',
  'True',
  '13.747'),
 ('29/08/2016 06:30:07',
  '0.627',
  '29/08/2016 06:30:15',
  '4.917',
  '29/08/2016 06:30:19',
  '0.922',
  '29/08/2016 06:30:21',
  'True',
  '16.796'),
 ('29/08/2016 06:35:06',
  '0.629',
  '29/08/2016 06:35:13',
  '3.707',
  '29/08/2016 06:35:16',
  '0.705',
  '29/08/2016 06:35:18',
  'True',
  '13.303'),
 ('29/08/2016 06:40:06',
  '0.628',
  '29/08/2016 06:40:14',
  '5.478',
  '29/08/2016 06:40:18',
  '0.727',
  '29/08/2016 06:40:19',
  'True',
  '14.933'),
 ('29/08/2016 06:45:06',
  '0.620',
  '29/08/2016 06:45:14',
  '5.294',
  '29/08/2016 06:45:18',
  '0.914',
  '29/08/2016 06:45:19',
  'True',
  '14.625'),
 ('29/08/2016 06:50:07',
  '0.635',
  '29/08/2016 06:50:13',
  '4.664',
  '29/08/2016 06:50:18',
  '0.700',
  '29/08/2016 06:50:20',
  'True',
  '15.230'),
 ('29/08/2016 06:55:07',
  '0.634',
  '29/08/2016 06:55:12',
  '3.551',
  '29/08/2016 06:55:15',
  '0.690',
  '29/08/2016 06:55:16',
  'True',
  '11.857'),
 ('29/08/2016 07:00:06',
  '0.626',
  '29/08/2016 07:00:12',
  '4.206',
  '29/08/2016 07:00:17',
  '0.778',
  '29/08/2016 07:00:19',
  'True',
  '14.659'),
 ('29/08/2016 07:05:06',
  '0.632',
  '29/08/2016 07:05:13',
  '3.843',
  '29/08/2016 07:05:17',
  '0.994',
  '29/08/2016 07:05:19',
  'True',
  '14.595'),
 ('29/08/2016 07:10:06',
  '0.628',
  '29/08/2016 07:10:12',
  '3.733',
  '29/08/2016 07:10:15',
  '0.687',
  '29/08/2016 07:10:17',
  'True',
  '12.428'),
 ('29/08/2016 07:15:06',
  '0.637',
  '29/08/2016 07:15:12',
  '4.134',
  '29/08/2016 07:15:16',
  '0.707',
  '29/08/2016 07:15:17',
  'True',
  '13.107'),
 ('29/08/2016 07:20:06',
  '0.636',
  '29/08/2016 07:20:16',
  '5.372',
  '29/08/2016 07:20:19',
  '0.892',
  '29/08/2016 07:20:21',
  'True',
  '16.430'),
 ('29/08/2016 07:25:07',
  '0.634',
  '29/08/2016 07:25:13',
  '4.264',
  '29/08/2016 07:25:18',
  '0.962',
  '29/08/2016 07:25:20',
  'True',
  '15.220'),
 ('29/08/2016 07:30:07',
  '0.620',
  '29/08/2016 07:30:12',
  '3.629',
  '29/08/2016 07:30:17',
  '0.718',
  '29/08/2016 07:30:18',
  'True',
  '13.709'),
 ('29/08/2016 07:35:06',
  '0.621',
  '29/08/2016 07:35:12',
  '4.034',
  '29/08/2016 07:35:18',
  '0.688',
  '29/08/2016 07:35:19',
  'True',
  '14.677'),
 ('29/08/2016 07:40:07',
  '0.640',
  '29/08/2016 07:40:13',
  '4.553',
  '29/08/2016 07:40:18',
  '0.691',
  '29/08/2016 07:40:20',
  'True',
  '14.951'),
 ('29/08/2016 07:45:06',
  '0.632',
  '29/08/2016 07:45:12',
  '3.879',
  '29/08/2016 07:45:16',
  '0.696',
  '29/08/2016 07:45:17',
  'True',
  '13.031'),
 ('29/08/2016 07:50:06',
  '0.631',
  '29/08/2016 07:50:13',
  '5.095',
  '29/08/2016 07:50:17',
  '0.730',
  '29/08/2016 07:50:18',
  'True',
  '14.620'),
 ('29/08/2016 07:55:06',
  '0.625',
  '29/08/2016 07:55:14',
  '5.525',
  '29/08/2016 07:55:18',
  '1.444',
  '29/08/2016 07:55:20',
  'True',
  '16.236'),
 ('29/08/2016 08:00:06',
  '0.641',
  '29/08/2016 08:00:13',
  '4.866',
  '29/08/2016 08:00:18',
  '1.552',
  '29/08/2016 08:00:19',
  'True',
  '14.878'),
 ('29/08/2016 08:05:06',
  '0.628',
  '29/08/2016 08:05:15',
  '7.215',
  '29/08/2016 08:05:19',
  '0.679',
  '29/08/2016 08:05:21',
  'True',
  '16.638'),
 ('29/08/2016 08:10:06',
  '0.623',
  '29/08/2016 08:10:13',
  '4.849',
  '29/08/2016 08:10:17',
  '0.714',
  '29/08/2016 08:10:18',
  'True',
  '14.163'),
 ('29/08/2016 08:15:06',
  '0.630',
  '29/08/2016 08:15:12',
  '3.745',
  '29/08/2016 08:15:16',
  '0.691',
  '29/08/2016 08:15:17',
  'True',
  '13.020'),
 ('29/08/2016 08:20:06',
  '0.614',
  '29/08/2016 08:20:13',
  '4.657',
  '29/08/2016 08:20:16',
  '0.934',
  '29/08/2016 08:20:18',
  'True',
  '14.071'),
 ('29/08/2016 08:25:06',
  '0.637',
  '29/08/2016 08:25:12',
  '4.075',
  '29/08/2016 08:25:15',
  '1.122',
  '29/08/2016 08:25:17',
  'True',
  '13.043'),
 ('29/08/2016 08:30:06',
  '0.634',
  '29/08/2016 08:30:13',
  '4.624',
  '29/08/2016 08:30:18',
  '1.137',
  '29/08/2016 08:30:19',
  'True',
  '14.959'),
 ('29/08/2016 08:35:06',
  '0.626',
  '29/08/2016 08:35:12',
  '3.668',
  '29/08/2016 08:35:17',
  '1.157',
  '29/08/2016 08:35:18',
  'True',
  '13.892'),
 ('29/08/2016 08:40:06',
  '0.635',
  '29/08/2016 08:40:13',
  '4.495',
  '29/08/2016 08:40:17',
  '1.147',
  '29/08/2016 08:40:18',
  'True',
  '14.078'),
 ('29/08/2016 08:45:06',
  '0.642',
  '29/08/2016 08:45:12',
  '3.717',
  '29/08/2016 08:45:17',
  '1.339',
  '29/08/2016 08:45:18',
  'True',
  '13.954'),
 ('29/08/2016 08:50:06',
  '0.649',
  '29/08/2016 08:50:14',
  '5.490',
  '29/08/2016 08:50:17',
  '0.703',
  '29/08/2016 08:50:18',
  'True',
  '14.399'),
 ('29/08/2016 08:55:07',
  '0.640',
  '29/08/2016 08:55:15',
  '5.510',
  '29/08/2016 08:55:19',
  '1.452',
  '29/08/2016 08:55:21',
  'True',
  '15.603'),
 ('29/08/2016 09:00:06',
  '0.629',
  '29/08/2016 09:00:13',
  '4.925',
  '29/08/2016 09:00:17',
  '0.747',
  '29/08/2016 09:00:18',
  'True',
  '14.223'),
 ('29/08/2016 09:05:07',
  '0.634',
  '29/08/2016 09:05:13',
  '3.799',
  '29/08/2016 09:05:16',
  '0.753',
  '29/08/2016 09:05:18',
  'True',
  '12.488'),
 ('29/08/2016 09:10:07',
  '0.638',
  '29/08/2016 09:10:14',
  '5.269',
  '29/08/2016 09:10:18',
  '1.158',
  '29/08/2016 09:10:19',
  'True',
  '14.800'),
 ('29/08/2016 09:15:06',
  '0.626',
  '29/08/2016 09:15:12',
  '3.547',
  '29/08/2016 09:15:16',
  '0.708',
  '29/08/2016 09:15:17',
  'True',
  '12.989'),
 ('29/08/2016 09:20:06',
  '0.630',
  '29/08/2016 09:20:13',
  '5.173',
  '29/08/2016 09:20:17',
  '0.683',
  '29/08/2016 09:20:19',
  'True',
  '14.760'),
 ('29/08/2016 09:25:06',
  '0.639',
  '29/08/2016 09:25:12',
  '4.087',
  '29/08/2016 09:25:15',
  '0.706',
  '29/08/2016 09:25:17',
  'True',
  '12.579'),
 ('29/08/2016 09:30:06',
  '0.628',
  '29/08/2016 09:30:13',
  '4.588',
  '29/08/2016 09:30:18',
  '0.709',
  '29/08/2016 09:30:19',
  'True',
  '15.147'),
 ('29/08/2016 09:35:06',
  '0.627',
  '29/08/2016 09:35:13',
  '4.802',
  '29/08/2016 09:35:17',
  '0.698',
  '29/08/2016 09:35:19',
  'True',
  '14.617'),
 ('29/08/2016 09:40:07',
  '0.614',
  '29/08/2016 09:40:12',
  '3.895',
  '29/08/2016 09:40:17',
  '0.725',
  '29/08/2016 09:40:19',
  'True',
  '14.668'),
 ('29/08/2016 09:45:06',
  '0.641',
  '29/08/2016 09:45:14',
  '5.185',
  '29/08/2016 09:45:17',
  '0.694',
  '29/08/2016 09:45:19',
  'True',
  '14.923'),
 ('29/08/2016 09:50:06',
  '0.645',
  '29/08/2016 09:50:13',
  '4.448',
  '29/08/2016 09:50:17',
  '0.702',
  '29/08/2016 09:50:18',
  'True',
  '13.971'),
 ('29/08/2016 09:55:06',
  '0.621',
  '29/08/2016 09:55:12',
  '3.869',
  '29/08/2016 09:55:17',
  '0.711',
  '29/08/2016 09:55:18',
  'True',
  '13.556'),
 ('29/08/2016 10:00:07',
  '0.640',
  '29/08/2016 10:00:13',
  '3.926',
  '29/08/2016 10:00:17',
  '0.697',
  '29/08/2016 10:00:18',
  'True',
  '12.413'),
 ('29/08/2016 10:05:07',
  '0.639',
  '29/08/2016 10:05:15',
  '5.878',
  '29/08/2016 10:05:19',
  '0.831',
  '29/08/2016 10:05:20',
  'True',
  '15.284'),
 ('29/08/2016 10:10:06',
  '0.625',
  '29/08/2016 10:10:13',
  '3.622',
  '29/08/2016 10:10:17',
  '1.060',
  '29/08/2016 10:10:19',
  'True',
  '14.752'),
 ('29/08/2016 10:15:07',
  '0.630',
  '29/08/2016 10:15:12',
  '3.539',
  '29/08/2016 10:15:16',
  '0.871',
  '29/08/2016 10:15:18',
  'True',
  '13.375'),
 ('29/08/2016 10:20:06',
  '0.642',
  '29/08/2016 10:20:12',
  '3.765',
  '29/08/2016 10:20:15',
  '0.856',
  '29/08/2016 10:20:17',
  'True',
  '13.134'),
 ('29/08/2016 10:25:07',
  '0.634',
  '29/08/2016 10:25:13',
  '3.970',
  '29/08/2016 10:25:17',
  '0.682',
  '29/08/2016 10:25:18',
  'True',
  '13.344'),
 ('29/08/2016 10:30:06',
  '0.637',
  '29/08/2016 10:30:12',
  '4.289',
  '29/08/2016 10:30:17',
  '0.692',
  '29/08/2016 10:30:18',
  'True',
  '14.208'),
 ('29/08/2016 10:35:06',
  '0.631',
  '29/08/2016 10:35:12',
  '4.296',
  '29/08/2016 10:35:16',
  '0.952',
  '29/08/2016 10:35:18',
  'True',
  '13.675'),
 ('29/08/2016 10:40:06',
  '0.631',
  '29/08/2016 10:40:13',
  '3.674',
  '29/08/2016 10:40:16',
  '0.696',
  '29/08/2016 10:40:17',
  'True',
  '12.565'),
 ('29/08/2016 10:45:06',
  '0.635',
  '29/08/2016 10:45:12',
  '4.239',
  '29/08/2016 10:45:16',
  '0.703',
  '29/08/2016 10:45:17',
  'True',
  '13.446'),
 ('29/08/2016 10:50:06',
  '0.641',
  '29/08/2016 10:50:13',
  '4.396',
  '29/08/2016 10:50:16',
  '0.920',
  '29/08/2016 10:50:18',
  'True',
  '13.707'),
 ('29/08/2016 10:55:07',
  '0.637',
  '29/08/2016 10:55:12',
  '3.664',
  '29/08/2016 10:55:16',
  '0.702',
  '29/08/2016 10:55:18',
  'True',
  '13.723'),
 ('29/08/2016 11:00:06',
  '0.632',
  '29/08/2016 11:00:12',
  '3.525',
  '29/08/2016 11:00:16',
  '0.676',
  '29/08/2016 11:00:18',
  'True',
  '13.542'),
 ('29/08/2016 11:05:06',
  '0.630',
  '29/08/2016 11:05:12',
  '3.871',
  '29/08/2016 11:05:17',
  '1.007',
  '29/08/2016 11:05:18',
  'True',
  '14.474'),
 ('29/08/2016 11:10:06',
  '0.629',
  '29/08/2016 11:10:13',
  '4.178',
  '29/08/2016 11:10:16',
  '0.694',
  '29/08/2016 11:10:18',
  'True',
  '13.735'),
 ('29/08/2016 11:15:07',
  '0.641',
  '29/08/2016 11:15:13',
  '3.919',
  '29/08/2016 11:15:18',
  '0.713',
  '29/08/2016 11:15:19',
  'True',
  '14.516'),
 ('29/08/2016 11:20:07',
  '0.635',
  '29/08/2016 11:20:13',
  '4.182',
  '29/08/2016 11:20:16',
  '0.695',
  '29/08/2016 11:20:17',
  'True',
  '12.813'),
 ('29/08/2016 11:25:06',
  '0.630',
  '29/08/2016 11:25:11',
  '3.805',
  '29/08/2016 11:25:15',
  '0.815',
  '29/08/2016 11:25:16',
  'True',
  '12.555'),
 ('29/08/2016 11:30:06',
  '0.623',
  '29/08/2016 11:30:14',
  '4.767',
  '29/08/2016 11:30:18',
  '0.704',
  '29/08/2016 11:30:19',
  'True',
  '15.104'),
 ('29/08/2016 11:35:06',
  '0.645',
  '29/08/2016 11:35:12',
  '4.148',
  '29/08/2016 11:35:16',
  '1.404',
  '29/08/2016 11:35:18',
  'True',
  '13.720'),
 ('29/08/2016 11:40:06',
  '0.624',
  '29/08/2016 11:40:14',
  '5.113',
  '29/08/2016 11:40:17',
  '0.690',
  '29/08/2016 11:40:18',
  'True',
  '14.252'),
 ('29/08/2016 11:45:06',
  '0.628',
  '29/08/2016 11:45:13',
  '3.589',
  '29/08/2016 11:45:17',
  '0.831',
  '29/08/2016 11:45:18',
  'True',
  '13.972'),
 ('29/08/2016 11:50:06',
  '0.617',
  '29/08/2016 11:50:14',
  '5.579',
  '29/08/2016 11:50:18',
  '0.691',
  '29/08/2016 11:50:19',
  'True',
  '15.463'),
 ('29/08/2016 11:55:06',
  '0.641',
  '29/08/2016 11:55:12',
  '3.691',
  '29/08/2016 11:55:15',
  '0.700',
  '29/08/2016 11:55:17',
  'True',
  '13.283'),
 ('29/08/2016 12:00:07',
  '0.631',
  '29/08/2016 12:00:13',
  '4.177',
  '29/08/2016 12:00:17',
  '0.787',
  '29/08/2016 12:00:19',
  'True',
  '13.987'),
 ('29/08/2016 12:05:07',
  '0.630',
  '29/08/2016 12:05:15',
  '5.502',
  '29/08/2016 12:05:20',
  '0.831',
  '29/08/2016 12:05:23',
  'True',
  '17.976'),
 ('29/08/2016 12:10:06',
  '0.628',
  '29/08/2016 12:10:14',
  '5.262',
  '29/08/2016 12:10:17',
  '1.037',
  '29/08/2016 12:10:19',
  'True',
  '14.604'),
 ('29/08/2016 12:15:07',
  '0.630',
  '29/08/2016 12:15:13',
  '4.016',
  '29/08/2016 12:15:18',
  '0.960',
  '29/08/2016 12:15:20',
  'True',
  '15.932'),
 ('29/08/2016 12:20:06',
  '0.639',
  '29/08/2016 12:20:14',
  '4.696',
  '29/08/2016 12:20:17',
  '0.699',
  '29/08/2016 12:20:18',
  'True',
  '14.192'),
 ('29/08/2016 12:25:07',
  '0.652',
  '29/08/2016 12:25:12',
  '3.708',
  '29/08/2016 12:25:16',
  '0.697',
  '29/08/2016 12:25:17',
  'True',
  '13.120'),
 ('29/08/2016 12:30:06',
  '0.634',
  '29/08/2016 12:30:12',
  '3.554',
  '29/08/2016 12:30:16',
  '0.719',
  '29/08/2016 12:30:17',
  'True',
  '13.302'),
 ('29/08/2016 12:35:06',
  '0.630',
  '29/08/2016 12:35:15',
  '6.658',
  '29/08/2016 12:35:20',
  '0.683',
  '29/08/2016 12:35:22',
  'True',
  '17.459'),
 ('29/08/2016 12:40:06',
  '0.631',
  '29/08/2016 12:40:12',
  '3.706',
  '29/08/2016 12:40:16',
  '0.697',
  '29/08/2016 12:40:17',
  'True',
  '13.170'),
 ('29/08/2016 12:45:06',
  '0.635',
  '29/08/2016 12:45:12',
  '3.859',
  '29/08/2016 12:45:15',
  '0.724',
  '29/08/2016 12:45:17',
  'True',
  '12.672'),
 ('29/08/2016 12:50:07',
  '0.639',
  '29/08/2016 12:50:13',
  '4.161',
  '29/08/2016 12:50:17',
  '1.021',
  '29/08/2016 12:50:18',
  'True',
  '13.784'),
 ('29/08/2016 12:55:06',
  '0.632',
  '29/08/2016 12:55:13',
  '5.071',
  '29/08/2016 12:55:17',
  '0.707',
  '29/08/2016 12:55:19',
  'True',
  '14.461'),
 ('29/08/2016 13:00:06',
  '0.632',
  '29/08/2016 13:00:12',
  '3.512',
  '29/08/2016 13:00:15',
  '0.699',
  '29/08/2016 13:00:16',
  'True',
  '12.236'),
 ('29/08/2016 13:05:06',
  '0.625',
  '29/08/2016 13:05:11',
  '3.538',
  '29/08/2016 13:05:15',
  '1.238',
  '29/08/2016 13:05:17',
  'True',
  '12.720'),
 ('29/08/2016 13:10:07',
  '0.633',
  '29/08/2016 13:10:13',
  '4.367',
  '29/08/2016 13:10:16',
  '0.729',
  '29/08/2016 13:10:18',
  'True',
  '13.789'),
 ('29/08/2016 13:15:06',
  '0.630',
  '29/08/2016 13:15:15',
  '6.011',
  '29/08/2016 13:15:20',
  '1.268',
  '29/08/2016 13:15:21',
  'True',
  '16.762'),
 ('29/08/2016 13:20:06',
  '0.627',
  '29/08/2016 13:20:13',
  '4.748',
  '29/08/2016 13:20:17',
  '0.760',
  '29/08/2016 13:20:19',
  'True',
  '15.094'),
 ('29/08/2016 13:25:07',
  '0.642',
  '29/08/2016 13:25:13',
  '4.401',
  '29/08/2016 13:25:18',
  '0.699',
  '29/08/2016 13:25:19',
  'True',
  '14.318'),
 ('29/08/2016 13:30:07',
  '0.622',
  '29/08/2016 13:30:13',
  '3.898',
  '29/08/2016 13:30:16',
  '0.695',
  '29/08/2016 13:30:17',
  'True',
  '12.898'),
 ('29/08/2016 13:35:06',
  '0.639',
  '29/08/2016 13:35:12',
  '3.767',
  '29/08/2016 13:35:15',
  '0.755',
  '29/08/2016 13:35:17',
  'True',
  '12.673'),
 ('29/08/2016 13:40:07',
  '0.627',
  '29/08/2016 13:40:15',
  '5.602',
  '29/08/2016 13:40:18',
  '0.692',
  '29/08/2016 13:40:19',
  'True',
  '14.784'),
 ('29/08/2016 13:45:07',
  '0.632',
  '29/08/2016 13:45:14',
  '5.113',
  '29/08/2016 13:45:19',
  '0.890',
  '29/08/2016 13:45:20',
  'True',
  '15.192'),
 ('29/08/2016 13:50:06',
  '0.631',
  '29/08/2016 13:50:14',
  '5.079',
  '29/08/2016 13:50:18',
  '0.693',
  '29/08/2016 13:50:19',
  'True',
  '14.565'),
 ('29/08/2016 13:55:06',
  '0.625',
  '29/08/2016 13:55:12',
  '3.904',
  '29/08/2016 13:55:15',
  '0.690',
  '29/08/2016 13:55:16',
  'True',
  '12.744'),
 ('29/08/2016 14:00:07',
  '0.628',
  '29/08/2016 14:00:15',
  '5.799',
  '29/08/2016 14:00:19',
  '0.853',
  '29/08/2016 14:00:20',
  'True',
  '16.185'),
 ('29/08/2016 14:05:06',
  '0.629',
  '29/08/2016 14:05:12',
  '3.585',
  '29/08/2016 14:05:15',
  '0.685',
  '29/08/2016 14:05:16',
  'True',
  '12.258'),
 ('29/08/2016 14:10:07',
  '0.640',
  '29/08/2016 14:10:15',
  '5.622',
  '29/08/2016 14:10:18',
  '0.707',
  '29/08/2016 14:10:19',
  'True',
  '15.016'),
 ('29/08/2016 14:15:06',
  '0.631',
  '29/08/2016 14:15:12',
  '3.880',
  '29/08/2016 14:15:15',
  '0.734',
  '29/08/2016 14:15:17',
  'True',
  '12.445'),
 ('29/08/2016 14:20:07',
  '0.631',
  '29/08/2016 14:20:13',
  '4.214',
  '29/08/2016 14:20:16',
  '0.677',
  '29/08/2016 14:20:17',
  'True',
  '12.738'),
 ('29/08/2016 14:25:06',
  '0.621',
  '29/08/2016 14:25:14',
  '5.150',
  '29/08/2016 14:25:17',
  '0.871',
  '29/08/2016 14:25:19',
  'True',
  '14.534'),
 ('29/08/2016 14:30:07',
  '0.631',
  '29/08/2016 14:30:13',
  '4.133',
  '29/08/2016 14:30:17',
  '0.772',
  '29/08/2016 14:30:18',
  'True',
  '14.129'),
 ('29/08/2016 14:35:07',
  '0.639',
  '29/08/2016 14:35:12',
  '3.636',
  '29/08/2016 14:35:15',
  '0.690',
  '29/08/2016 14:35:17',
  'True',
  '12.483'),
 ('29/08/2016 14:40:06',
  '0.624',
  '29/08/2016 14:40:12',
  '3.578',
  '29/08/2016 14:40:16',
  '1.251',
  '29/08/2016 14:40:18',
  'True',
  '13.863'),
 ('29/08/2016 14:45:06',
  '0.635',
  '29/08/2016 14:45:12',
  '3.629',
  '29/08/2016 14:45:16',
  '0.780',
  '29/08/2016 14:45:17',
  'True',
  '12.732'),
 ('29/08/2016 14:50:06',
  '0.622',
  '29/08/2016 14:50:13',
  '4.874',
  '29/08/2016 14:50:16',
  '0.690',
  '29/08/2016 14:50:17',
  'True',
  '13.544'),
 ('29/08/2016 14:55:06',
  '0.630',
  '29/08/2016 14:55:14',
  '4.949',
  '29/08/2016 14:55:17',
  '0.690',
  '29/08/2016 14:55:19',
  'True',
  '15.165'),
 ('29/08/2016 15:00:06',
  '0.632',
  '29/08/2016 15:00:12',
  '3.558',
  '29/08/2016 15:00:17',
  '1.230',
  '29/08/2016 15:00:18',
  'True',
  '13.824'),
 ('29/08/2016 15:05:06',
  '0.628',
  '29/08/2016 15:05:12',
  '4.198',
  '29/08/2016 15:05:15',
  '0.684',
  '29/08/2016 15:05:17',
  'True',
  '12.668'),
 ('29/08/2016 15:10:06',
  '0.626',
  '29/08/2016 15:10:11',
  '3.505',
  '29/08/2016 15:10:15',
  '0.810',
  '29/08/2016 15:10:17',
  'True',
  '13.423'),
 ('29/08/2016 15:15:07',
  '0.634',
  '29/08/2016 15:15:12',
  '3.615',
  '29/08/2016 15:15:17',
  '1.053',
  '29/08/2016 15:15:20',
  'True',
  '15.362'),
 ('29/08/2016 15:20:07',
  '0.628',
  '29/08/2016 15:20:14',
  '4.629',
  '29/08/2016 15:20:19',
  '0.942',
  '29/08/2016 15:20:21',
  'True',
  '16.285'),
 ('29/08/2016 15:25:06',
  '0.632',
  '29/08/2016 15:25:12',
  '4.005',
  '29/08/2016 15:25:16',
  '0.693',
  '29/08/2016 15:25:17',
  'True',
  '13.338'),
 ('29/08/2016 15:30:06',
  '0.640',
  '29/08/2016 15:30:13',
  '5.122',
  '29/08/2016 15:30:16',
  '0.733',
  '29/08/2016 15:30:18',
  'True',
  '14.269'),
 ('29/08/2016 15:35:06',
  '0.637',
  '29/08/2016 15:35:14',
  '5.150',
  '29/08/2016 15:35:19',
  '1.173',
  '29/08/2016 15:35:20',
  'True',
  '16.385'),
 ('29/08/2016 15:40:07',
  '0.617',
  '29/08/2016 15:40:12',
  '3.809',
  '29/08/2016 15:40:17',
  '0.829',
  '29/08/2016 15:40:18',
  'True',
  '14.196'),
 ('29/08/2016 15:45:06',
  '0.640',
  '29/08/2016 15:45:12',
  '3.745',
  '29/08/2016 15:45:15',
  '0.772',
  '29/08/2016 15:45:17',
  'True',
  '12.804'),
 ('29/08/2016 15:50:07',
  '0.621',
  '29/08/2016 15:50:13',
  '3.676',
  '29/08/2016 15:50:16',
  '0.735',
  '29/08/2016 15:50:18',
  'True',
  '13.016'),
 ('29/08/2016 15:55:07',
  '0.636',
  '29/08/2016 15:55:13',
  '3.803',
  '29/08/2016 15:55:17',
  '0.728',
  '29/08/2016 15:55:18',
  'True',
  '14.077'),
 ('29/08/2016 16:00:06',
  '0.626',
  '29/08/2016 16:00:14',
  '4.963',
  '29/08/2016 16:00:17',
  '0.803',
  '29/08/2016 16:00:19',
  'True',
  '14.383'),
 ('29/08/2016 16:05:07',
  '0.625',
  '29/08/2016 16:05:15',
  '5.307',
  '29/08/2016 16:05:18',
  '0.687',
  '29/08/2016 16:05:20',
  'True',
  '15.547'),
 ('29/08/2016 16:10:06',
  '0.623',
  '29/08/2016 16:10:12',
  '3.659',
  '29/08/2016 16:10:16',
  '0.681',
  '29/08/2016 16:10:18',
  'True',
  '13.593'),
 ('29/08/2016 16:15:06',
  '0.614',
  '29/08/2016 16:15:15',
  '5.671',
  '29/08/2016 16:15:19',
  '0.705',
  '29/08/2016 16:15:20',
  'True',
  '15.814'),
 ('29/08/2016 16:20:06',
  '0.629',
  '29/08/2016 16:20:12',
  '3.502',
  '29/08/2016 16:20:16',
  '0.895',
  '29/08/2016 16:20:17',
  'True',
  '12.663'),
 ('29/08/2016 16:25:06',
  '0.639',
  '29/08/2016 16:25:13',
  '4.765',
  '29/08/2016 16:25:18',
  '0.898',
  '29/08/2016 16:25:20',
  'True',
  '15.811'),
 ('29/08/2016 16:30:07',
  '0.627',
  '29/08/2016 16:30:14',
  '4.729',
  '29/08/2016 16:30:17',
  '0.716',
  '29/08/2016 16:30:18',
  'True',
  '13.772'),
 ('29/08/2016 16:35:07',
  '0.627',
  '29/08/2016 16:35:14',
  '4.287',
  '29/08/2016 16:35:18',
  '0.799',
  '29/08/2016 16:35:21',
  'True',
  '16.046'),
 ('29/08/2016 16:40:06',
  '0.629',
  '29/08/2016 16:40:12',
  '3.694',
  '29/08/2016 16:40:16',
  '0.826',
  '29/08/2016 16:40:18',
  'True',
  '14.533'),
 ('29/08/2016 16:45:06',
  '0.632',
  '29/08/2016 16:45:14',
  '5.457',
  '29/08/2016 16:45:18',
  '1.201',
  '29/08/2016 16:45:20',
  'True',
  '15.820'),
 ('29/08/2016 16:50:06',
  '0.628',
  '29/08/2016 16:50:12',
  '3.747',
  '29/08/2016 16:50:15',
  '1.053',
  '29/08/2016 16:50:17',
  'True',
  '13.437'),
 ('29/08/2016 16:55:06',
  '0.634',
  '29/08/2016 16:55:13',
  '3.712',
  '29/08/2016 16:55:17',
  '0.726',
  '29/08/2016 16:55:18',
  'True',
  '14.226'),
 ('29/08/2016 17:00:07',
  '0.622',
  '29/08/2016 17:00:15',
  '5.676',
  '29/08/2016 17:00:19',
  '0.690',
  '29/08/2016 17:00:20',
  'True',
  '15.850'),
 ('29/08/2016 17:05:06',
  '0.631',
  '29/08/2016 17:05:14',
  '4.311',
  '29/08/2016 17:05:18',
  '0.816',
  '29/08/2016 17:05:19',
  'True',
  '15.109'),
 ('29/08/2016 17:10:07',
  '0.635',
  '29/08/2016 17:10:13',
  '3.520',
  '29/08/2016 17:10:16',
  '0.688',
  '29/08/2016 17:10:18',
  'True',
  '13.149'),
 ('29/08/2016 17:15:07',
  '0.621',
  '29/08/2016 17:15:13',
  '3.940',
  '29/08/2016 17:15:18',
  '0.923',
  '29/08/2016 17:15:19',
  'True',
  '14.571'),
 ('29/08/2016 17:20:06',
  '0.626',
  '29/08/2016 17:20:12',
  '3.519',
  '29/08/2016 17:20:19',
  '1.056',
  '29/08/2016 17:20:20',
  'True',
  '16.083'),
 ('29/08/2016 17:25:06',
  '0.635',
  '29/08/2016 17:25:13',
  '4.618',
  '29/08/2016 17:25:17',
  '0.688',
  '29/08/2016 17:25:18',
  'True',
  '14.242'),
 ('29/08/2016 17:30:07',
  '0.628',
  '29/08/2016 17:30:13',
  '3.862',
  '29/08/2016 17:30:16',
  '1.240',
  '29/08/2016 17:30:18',
  'True',
  '13.494'),
 ('29/08/2016 17:35:07',
  '0.635',
  '29/08/2016 17:35:13',
  '4.062',
  '29/08/2016 17:35:17',
  '0.707',
  '29/08/2016 17:35:19',
  'True',
  '14.285'),
 ('29/08/2016 17:40:06',
  '0.628',
  '29/08/2016 17:40:12',
  '4.190',
  '29/08/2016 17:40:15',
  '0.686',
  '29/08/2016 17:40:16',
  'True',
  '12.573'),
 ('29/08/2016 17:45:06',
  '0.624',
  '29/08/2016 17:45:14',
  '5.351',
  '29/08/2016 17:45:17',
  '0.704',
  '29/08/2016 17:45:18',
  'True',
  '14.471'),
 ('29/08/2016 17:50:07',
  '0.626',
  '29/08/2016 17:50:13',
  '3.576',
  '29/08/2016 17:50:18',
  '0.856',
  '29/08/2016 17:50:20',
  'True',
  '15.125'),
 ('29/08/2016 17:55:06',
  '0.637',
  '29/08/2016 17:55:13',
  '4.236',
  '29/08/2016 17:55:17',
  '0.948',
  '29/08/2016 17:55:19',
  'True',
  '14.864'),
 ('29/08/2016 18:00:07',
  '0.625',
  '29/08/2016 18:00:12',
  '3.637',
  '29/08/2016 18:00:16',
  '0.692',
  '29/08/2016 18:00:17',
  'True',
  '12.726'),
 ('29/08/2016 18:05:07',
  '0.633',
  '29/08/2016 18:05:14',
  '4.217',
  '29/08/2016 18:05:18',
  '1.696',
  '29/08/2016 18:05:21',
  'True',
  '16.230'),
 ('29/08/2016 18:10:06',
  '0.628',
  '29/08/2016 18:10:12',
  '4.154',
  '29/08/2016 18:10:17',
  '1.391',
  '29/08/2016 18:10:19',
  'True',
  '14.946'),
 ('29/08/2016 18:15:06',
  '0.630',
  '29/08/2016 18:15:14',
  '4.804',
  '29/08/2016 18:15:17',
  '0.727',
  '29/08/2016 18:15:19',
  'True',
  '14.503'),
 ('29/08/2016 18:20:07',
  '0.628',
  '29/08/2016 18:20:12',
  '3.538',
  '29/08/2016 18:20:16',
  '0.689',
  '29/08/2016 18:20:17',
  'True',
  '12.668'),
 ('29/08/2016 18:25:06',
  '0.636',
  '29/08/2016 18:25:12',
  '3.576',
  '29/08/2016 18:25:15',
  '0.692',
  '29/08/2016 18:25:17',
  'True',
  '12.657'),
 ('29/08/2016 18:30:06',
  '0.636',
  '29/08/2016 18:30:12',
  '3.560',
  '29/08/2016 18:30:18',
  '1.554',
  '29/08/2016 18:30:19',
  'True',
  '15.345'),
 ('29/08/2016 18:35:07',
  '0.625',
  '29/08/2016 18:35:15',
  '5.376',
  '29/08/2016 18:35:18',
  '0.701',
  '29/08/2016 18:35:19',
  'True',
  '14.429'),
 ('29/08/2016 18:40:07',
  '0.626',
  '29/08/2016 18:40:13',
  '4.193',
  '29/08/2016 18:40:17',
  '0.719',
  '29/08/2016 18:40:18',
  'True',
  '13.461'),
 ('29/08/2016 18:45:06',
  '0.624',
  '29/08/2016 18:45:14',
  '6.623',
  '29/08/2016 18:45:19',
  '1.510',
  '29/08/2016 18:45:20',
  'True',
  '16.340'),
 ('29/08/2016 18:50:07',
  '0.652',
  '29/08/2016 18:50:13',
  '4.626',
  '29/08/2016 18:50:17',
  '0.971',
  '29/08/2016 18:50:19',
  'True',
  '14.689'),
 ('29/08/2016 18:55:07',
  '0.632',
  '29/08/2016 18:55:14',
  '4.515',
  '29/08/2016 18:55:20',
  '1.006',
  '29/08/2016 18:55:21',
  'True',
  '16.632'),
 ('29/08/2016 19:00:07',
  '0.656',
  '29/08/2016 19:00:13',
  '3.758',
  '29/08/2016 19:00:16',
  '0.717',
  '29/08/2016 19:00:18',
  'True',
  '12.881'),
 ('29/08/2016 19:05:07',
  '0.629',
  '29/08/2016 19:05:12',
  '3.453',
  '29/08/2016 19:05:16',
  '0.743',
  '29/08/2016 19:05:17',
  'True',
  '12.350'),
 ('29/08/2016 19:10:06',
  '0.615',
  '29/08/2016 19:10:12',
  '3.939',
  '29/08/2016 19:10:16',
  '0.786',
  '29/08/2016 19:10:17',
  'True',
  '13.847'),
 ('29/08/2016 19:15:07',
  '0.625',
  '29/08/2016 19:15:14',
  '4.397',
  '29/08/2016 19:15:17',
  '0.686',
  '29/08/2016 19:15:18',
  'True',
  '13.433'),
 ('29/08/2016 19:20:06',
  '0.632',
  '29/08/2016 19:20:13',
  '3.995',
  '29/08/2016 19:20:16',
  '0.767',
  '29/08/2016 19:20:18',
  'True',
  '13.717'),
 ('29/08/2016 19:25:07',
  '0.630',
  '29/08/2016 19:25:12',
  '3.550',
  '29/08/2016 19:25:15',
  '0.686',
  '29/08/2016 19:25:16',
  'True',
  '12.077'),
 ('29/08/2016 19:30:07',
  '0.632',
  '29/08/2016 19:30:12',
  '3.572',
  '29/08/2016 19:30:15',
  '0.694',
  '29/08/2016 19:30:17',
  'True',
  '12.678'),
 ('29/08/2016 19:35:07',
  '0.629',
  '29/08/2016 19:35:13',
  '3.884',
  '29/08/2016 19:35:17',
  '0.858',
  '29/08/2016 19:35:19',
  'True',
  '14.091'),
 ('29/08/2016 19:40:07',
  '0.626',
  '29/08/2016 19:40:13',
  '3.838',
  '29/08/2016 19:40:17',
  '1.296',
  '29/08/2016 19:40:19',
  'True',
  '13.664'),
 ('29/08/2016 19:45:06',
  '0.625',
  '29/08/2016 19:45:13',
  '4.577',
  '29/08/2016 19:45:17',
  '0.920',
  '29/08/2016 19:45:19',
  'True',
  '15.335'),
 ('29/08/2016 19:50:06',
  '0.639',
  '29/08/2016 19:50:14',
  '5.346',
  '29/08/2016 19:50:18',
  '1.042',
  '29/08/2016 19:50:20',
  'True',
  '15.975'),
 ('29/08/2016 19:55:06',
  '0.637',
  '29/08/2016 19:55:12',
  '3.685',
  '29/08/2016 19:55:15',
  '0.699',
  '29/08/2016 19:55:16',
  'True',
  '12.457'),
 ('29/08/2016 20:00:06',
  '0.622',
  '29/08/2016 20:00:13',
  '4.442',
  '29/08/2016 20:00:16',
  '0.713',
  '29/08/2016 20:00:18',
  'True',
  '14.375'),
 ('29/08/2016 20:05:06',
  '0.621',
  '29/08/2016 20:05:15',
  '6.955',
  '29/08/2016 20:05:20',
  '1.177',
  '29/08/2016 20:05:22',
  'True',
  '17.784'),
 ('29/08/2016 20:10:06',
  '0.627',
  '29/08/2016 20:10:12',
  '3.557',
  '29/08/2016 20:10:16',
  '0.691',
  '29/08/2016 20:10:18',
  'True',
  '13.493'),
 ('29/08/2016 20:15:07',
  '0.632',
  '29/08/2016 20:15:13',
  '4.027',
  '29/08/2016 20:15:16',
  '0.689',
  '29/08/2016 20:15:17',
  'True',
  '12.486'),
 ('29/08/2016 20:20:07',
  '0.629',
  '29/08/2016 20:20:14',
  '5.227',
  '29/08/2016 20:20:19',
  '0.945',
  '29/08/2016 20:20:20',
  'True',
  '15.514'),
 ('29/08/2016 20:25:06',
  '0.617',
  '29/08/2016 20:25:13',
  '4.241',
  '29/08/2016 20:25:17',
  '1.024',
  '29/08/2016 20:25:18',
  'True',
  '14.328'),
 ('29/08/2016 20:30:06',
  '0.634',
  '29/08/2016 20:30:14',
  '5.245',
  '29/08/2016 20:30:19',
  '1.190',
  '29/08/2016 20:30:21',
  'True',
  '16.545'),
 ('29/08/2016 20:35:07',
  '0.638',
  '29/08/2016 20:35:13',
  '4.117',
  '29/08/2016 20:35:16',
  '1.077',
  '29/08/2016 20:35:18',
  'True',
  '14.002'),
 ('29/08/2016 20:40:06',
  '0.627',
  '29/08/2016 20:40:12',
  '3.595',
  '29/08/2016 20:40:15',
  '0.713',
  '29/08/2016 20:40:17',
  'True',
  '13.208'),
 ('29/08/2016 20:45:07',
  '0.639',
  '29/08/2016 20:45:15',
  '6.085',
  '29/08/2016 20:45:19',
  '0.773',
  '29/08/2016 20:45:21',
  'True',
  '16.007'),
 ('29/08/2016 20:50:06',
  '0.633',
  '29/08/2016 20:50:13',
  '5.262',
  '29/08/2016 20:50:18',
  '0.758',
  '29/08/2016 20:50:19',
  'True',
  '15.502'),
 ('29/08/2016 20:55:06',
  '0.619',
  '29/08/2016 20:55:13',
  '4.520',
  '29/08/2016 20:55:16',
  '0.704',
  '29/08/2016 20:55:17',
  'True',
  '13.128'),
 ('29/08/2016 21:00:06',
  '0.634',
  '29/08/2016 21:00:12',
  '3.721',
  '29/08/2016 21:00:16',
  '1.233',
  '29/08/2016 21:00:18',
  'True',
  '14.062'),
 ('29/08/2016 21:05:06',
  '0.630',
  '29/08/2016 21:05:12',
  '4.350',
  '29/08/2016 21:05:16',
  '0.702',
  '29/08/2016 21:05:18',
  'True',
  '13.949'),
 ('29/08/2016 21:10:06',
  '0.654',
  '29/08/2016 21:10:12',
  '3.794',
  '29/08/2016 21:10:17',
  '0.871',
  '29/08/2016 21:10:18',
  'True',
  '14.444'),
 ('29/08/2016 21:15:07',
  '0.630',
  '29/08/2016 21:15:13',
  '3.669',
  '29/08/2016 21:15:17',
  '0.688',
  '29/08/2016 21:15:18',
  'True',
  '13.598'),
 ('29/08/2016 21:20:07',
  '0.620',
  '29/08/2016 21:20:14',
  '5.141',
  '29/08/2016 21:20:18',
  '0.892',
  '29/08/2016 21:20:19',
  'True',
  '14.645'),
 ('29/08/2016 21:25:06',
  '0.634',
  '29/08/2016 21:25:12',
  '4.440',
  '29/08/2016 21:25:17',
  '1.877',
  '29/08/2016 21:25:19',
  'True',
  '15.064'),
 ('29/08/2016 21:30:07',
  '0.625',
  '29/08/2016 21:30:14',
  '4.638',
  '29/08/2016 21:30:17',
  '1.015',
  '29/08/2016 21:30:18',
  'True',
  '13.823'),
 ('29/08/2016 21:35:07',
  '0.635',
  '29/08/2016 21:35:14',
  '5.068',
  '29/08/2016 21:35:18',
  '0.851',
  '29/08/2016 21:35:20',
  'True',
  '15.278'),
 ('29/08/2016 21:40:07',
  '0.629',
  '29/08/2016 21:40:12',
  '3.585',
  '29/08/2016 21:40:16',
  '0.982',
  '29/08/2016 21:40:18',
  'True',
  '13.371'),
 ('29/08/2016 21:45:06',
  '0.623',
  '29/08/2016 21:45:15',
  '6.813',
  '29/08/2016 21:45:19',
  '0.745',
  '29/08/2016 21:45:21',
  'True',
  '16.748'),
 ('29/08/2016 21:50:07',
  '0.635',
  '29/08/2016 21:50:13',
  '3.882',
  '29/08/2016 21:50:18',
  '1.919',
  '29/08/2016 21:50:19',
  'True',
  '14.811'),
 ('29/08/2016 21:55:06',
  '0.628',
  '29/08/2016 21:55:13',
  '4.584',
  '29/08/2016 21:55:17',
  '0.683',
  '29/08/2016 21:55:18',
  'True',
  '13.432'),
 ('29/08/2016 22:00:07',
  '0.634',
  '29/08/2016 22:00:14',
  '4.900',
  '29/08/2016 22:00:19',
  '1.457',
  '29/08/2016 22:00:20',
  'True',
  '15.300'),
 ('29/08/2016 22:05:06',
  '0.627',
  '29/08/2016 22:05:14',
  '5.603',
  '29/08/2016 22:05:18',
  '0.695',
  '29/08/2016 22:05:20',
  'True',
  '15.903'),
 ('29/08/2016 22:10:06',
  '0.631',
  '29/08/2016 22:10:13',
  '5.505',
  '29/08/2016 22:10:17',
  '1.149',
  '29/08/2016 22:10:19',
  'True',
  '15.237'),
 ('29/08/2016 22:15:06',
  '0.629',
  '29/08/2016 22:15:12',
  '3.655',
  '29/08/2016 22:15:17',
  '1.304',
  '29/08/2016 22:15:19',
  'True',
  '15.073'),
 ('29/08/2016 22:20:06',
  '0.618',
  '29/08/2016 22:20:11',
  '3.585',
  '29/08/2016 22:20:16',
  '1.072',
  '29/08/2016 22:20:17',
  'True',
  '13.680'),
 ('29/08/2016 22:25:07',
  '0.626',
  '29/08/2016 22:25:12',
  '3.600',
  '29/08/2016 22:25:16',
  '0.708',
  '29/08/2016 22:25:17',
  'True',
  '12.951'),
 ('29/08/2016 22:30:06',
  '0.618',
  '29/08/2016 22:30:13',
  '4.512',
  '29/08/2016 22:30:16',
  '1.049',
  '29/08/2016 22:30:18',
  'True',
  '13.914'),
 ('29/08/2016 22:35:07',
  '0.628',
  '29/08/2016 22:35:14',
  '4.597',
  '29/08/2016 22:35:19',
  '1.041',
  '29/08/2016 22:35:20',
  'True',
  '15.227'),
 ('29/08/2016 22:40:07',
  '0.643',
  '29/08/2016 22:40:13',
  '3.669',
  '29/08/2016 22:40:17',
  '0.693',
  '29/08/2016 22:40:19',
  'True',
  '14.144'),
 ('29/08/2016 22:45:07',
  '0.626',
  '29/08/2016 22:45:12',
  '3.761',
  '29/08/2016 22:45:16',
  '0.685',
  '29/08/2016 22:45:17',
  'True',
  '13.258'),
 ('29/08/2016 22:50:07',
  '0.636',
  '29/08/2016 22:50:14',
  '4.705',
  '29/08/2016 22:50:18',
  '0.702',
  '29/08/2016 22:50:19',
  'True',
  '14.740'),
 ('29/08/2016 22:55:07',
  '0.631',
  '29/08/2016 22:55:14',
  '5.450',
  '29/08/2016 22:55:18',
  '0.689',
  '29/08/2016 22:55:19',
  'True',
  '14.578'),
 ('29/08/2016 23:00:06',
  '0.624',
  '29/08/2016 23:00:12',
  '3.657',
  '29/08/2016 23:00:16',
  '0.703',
  '29/08/2016 23:00:17',
  'True',
  '13.062'),
 ('29/08/2016 23:05:06',
  '0.632',
  '29/08/2016 23:05:13',
  '4.632',
  '29/08/2016 23:05:17',
  '0.702',
  '29/08/2016 23:05:19',
  'True',
  '14.610'),
 ('29/08/2016 23:10:07',
  '0.631',
  '29/08/2016 23:10:13',
  '4.495',
  '29/08/2016 23:10:17',
  '0.690',
  '29/08/2016 23:10:18',
  'True',
  '14.026'),
 ('29/08/2016 23:15:06',
  '0.634',
  '29/08/2016 23:15:12',
  '3.712',
  '29/08/2016 23:15:15',
  '0.748',
  '29/08/2016 23:15:17',
  'True',
  '12.959'),
 ('29/08/2016 23:20:07',
  '0.634',
  '29/08/2016 23:20:12',
  '3.621',
  '29/08/2016 23:20:16',
  '1.001',
  '29/08/2016 23:20:17',
  'True',
  '13.080'),
 ('29/08/2016 23:25:07',
  '0.629',
  '29/08/2016 23:25:14',
  '4.836',
  '29/08/2016 23:25:19',
  '1.682',
  '29/08/2016 23:25:20',
  'True',
  '15.694'),
 ('29/08/2016 23:30:06',
  '0.628',
  '29/08/2016 23:30:12',
  '3.749',
  '29/08/2016 23:30:16',
  '0.784',
  '29/08/2016 23:30:18',
  'True',
  '14.235'),
 ('29/08/2016 23:35:07',
  '0.632',
  '29/08/2016 23:35:13',
  '4.395',
  '29/08/2016 23:35:17',
  '0.741',
  '29/08/2016 23:35:19',
  'True',
  '14.392'),
 ('29/08/2016 23:40:06',
  '0.620',
  '29/08/2016 23:40:13',
  '4.983',
  '29/08/2016 23:40:17',
  '0.804',
  '29/08/2016 23:40:19',
  'True',
  '14.989'),
 ('29/08/2016 23:45:06',
  '0.630',
  '29/08/2016 23:45:12',
  '3.634',
  '29/08/2016 23:45:16',
  '0.737',
  '29/08/2016 23:45:17',
  'True',
  '13.549'),
 ('29/08/2016 23:50:06',
  '0.632',
  '29/08/2016 23:50:12',
  '3.582',
  '29/08/2016 23:50:17',
  '0.716',
  '29/08/2016 23:50:19',
  'True',
  '14.880'),
 ('29/08/2016 23:55:06',
  '0.629',
  '29/08/2016 23:55:14',
  '5.406',
  '29/08/2016 23:55:18',
  '0.692',
  '29/08/2016 23:55:19',
  'True',
  '14.996'),
 ('30/08/2016 00:00:07',
  '0.621',
  '30/08/2016 00:00:14',
  '4.521',
  '30/08/2016 00:00:18',
  '1.029',
  '30/08/2016 00:00:19',
  'True',
  '14.292'),
 ('30/08/2016 00:05:06',
  '0.613',
  '30/08/2016 00:05:14',
  '4.861',
  '30/08/2016 00:05:17',
  '0.684',
  '30/08/2016 00:05:18',
  'True',
  '14.115'),
 ('30/08/2016 00:10:06',
  '0.627',
  '30/08/2016 00:10:12',
  '4.357',
  '30/08/2016 00:10:16',
  '0.844',
  '30/08/2016 00:10:17',
  'True',
  '13.476'),
 ('30/08/2016 00:15:06',
  '0.619',
  '30/08/2016 00:15:12',
  '3.938',
  '30/08/2016 00:15:16',
  '0.727',
  '30/08/2016 00:15:18',
  'True',
  '13.421'),
 ('30/08/2016 00:20:07',
  '0.616',
  '30/08/2016 00:20:12',
  '3.574',
  '30/08/2016 00:20:15',
  '0.686',
  '30/08/2016 00:20:17',
  'True',
  '12.133'),
 ('30/08/2016 00:25:07',
  '0.621',
  '30/08/2016 00:25:13',
  '3.577',
  '30/08/2016 00:25:16',
  '0.914',
  '30/08/2016 00:25:18',
  'True',
  '13.641'),
 ('30/08/2016 00:30:06',
  '0.620',
  '30/08/2016 00:30:13',
  '3.845',
  '30/08/2016 00:30:16',
  '0.777',
  '30/08/2016 00:30:17',
  'True',
  '13.170'),
 ('30/08/2016 00:35:07',
  '0.616',
  '30/08/2016 00:35:12',
  '3.526',
  '30/08/2016 00:35:16',
  '0.686',
  '30/08/2016 00:35:17',
  'True',
  '12.676'),
 ('30/08/2016 00:40:06',
  '0.617',
  '30/08/2016 00:40:12',
  '4.367',
  '30/08/2016 00:40:15',
  '0.690',
  '30/08/2016 00:40:17',
  'True',
  '12.872'),
 ('30/08/2016 00:45:07',
  '0.635',
  '30/08/2016 00:45:14',
  '4.626',
  '30/08/2016 00:45:20',
  '1.994',
  '30/08/2016 00:45:21',
  'True',
  '16.326'),
 ('30/08/2016 00:50:06',
  '0.620',
  '30/08/2016 00:50:11',
  '3.564',
  '30/08/2016 00:50:15',
  '1.246',
  '30/08/2016 00:50:17',
  'True',
  '13.254'),
 ('30/08/2016 00:55:06',
  '0.624',
  '30/08/2016 00:55:13',
  '3.986',
  '30/08/2016 00:55:16',
  '0.699',
  '30/08/2016 00:55:17',
  'True',
  '13.522'),
 ('30/08/2016 01:00:06',
  '0.632',
  '30/08/2016 01:00:12',
  '4.080',
  '30/08/2016 01:00:16',
  '1.187',
  '30/08/2016 01:00:18',
  'True',
  '13.518'),
 ('30/08/2016 01:05:07',
  '0.620',
  '30/08/2016 01:05:14',
  '4.715',
  '30/08/2016 01:05:17',
  '0.689',
  '30/08/2016 01:05:20',
  'True',
  '14.980'),
 ('30/08/2016 01:10:06',
  '0.629',
  '30/08/2016 01:10:12',
  '3.728',
  '30/08/2016 01:10:16',
  '0.714',
  '30/08/2016 01:10:17',
  'True',
  '13.346'),
 ('30/08/2016 01:15:06',
  '0.612',
  '30/08/2016 01:15:12',
  '4.301',
  '30/08/2016 01:15:17',
  '1.569',
  '30/08/2016 01:15:18',
  'True',
  '14.430'),
 ('30/08/2016 01:20:06',
  '0.616',
  '30/08/2016 01:20:12',
  '4.104',
  '30/08/2016 01:20:17',
  '0.701',
  '30/08/2016 01:20:18',
  'True',
  '13.355'),
 ('30/08/2016 01:25:06',
  '0.613',
  '30/08/2016 01:25:13',
  '4.096',
  '30/08/2016 01:25:18',
  '0.981',
  '30/08/2016 01:25:20',
  'True',
  '15.300'),
 ('30/08/2016 01:30:06',
  '0.630',
  '30/08/2016 01:30:13',
  '4.289',
  '30/08/2016 01:30:16',
  '0.711',
  '30/08/2016 01:30:18',
  'True',
  '13.719'),
 ('30/08/2016 01:35:06',
  '0.618',
  '30/08/2016 01:35:12',
  '3.599',
  '30/08/2016 01:35:15',
  '0.700',
  '30/08/2016 01:35:17',
  'True',
  '12.207'),
 ('30/08/2016 01:40:06',
  '0.617',
  '30/08/2016 01:40:13',
  '4.304',
  '30/08/2016 01:40:17',
  '0.690',
  '30/08/2016 01:40:18',
  'True',
  '14.548'),
 ('30/08/2016 01:45:06',
  '0.613',
  '30/08/2016 01:45:12',
  '3.531',
  '30/08/2016 01:45:16',
  '0.687',
  '30/08/2016 01:45:17',
  'True',
  '13.239'),
 ('30/08/2016 01:50:06',
  '0.616',
  '30/08/2016 01:50:13',
  '4.956',
  '30/08/2016 01:50:17',
  '0.688',
  '30/08/2016 01:50:19',
  'True',
  '14.402'),
 ('30/08/2016 01:55:07',
  '0.624',
  '30/08/2016 01:55:13',
  '3.851',
  '30/08/2016 01:55:18',
  '1.388',
  '30/08/2016 01:55:19',
  'True',
  '14.678'),
 ('30/08/2016 02:00:06',
  '0.613',
  '30/08/2016 02:00:12',
  '4.238',
  '30/08/2016 02:00:16',
  '0.682',
  '30/08/2016 02:00:17',
  'True',
  '13.231'),
 ('30/08/2016 02:05:06',
  '0.621',
  '30/08/2016 02:05:12',
  '3.948',
  '30/08/2016 02:05:15',
  '0.697',
  '30/08/2016 02:05:17',
  'True',
  '13.415'),
 ('30/08/2016 02:10:06',
  '0.620',
  '30/08/2016 02:10:13',
  '5.216',
  '30/08/2016 02:10:17',
  '0.687',
  '30/08/2016 02:10:19',
  'True',
  '14.845'),
 ('30/08/2016 02:15:06',
  '0.623',
  '30/08/2016 02:15:13',
  '4.385',
  '30/08/2016 02:15:16',
  '0.692',
  '30/08/2016 02:15:18',
  'True',
  '13.571'),
 ('30/08/2016 02:20:07',
  '0.618',
  '30/08/2016 02:20:13',
  '4.848',
  '30/08/2016 02:20:17',
  '0.694',
  '30/08/2016 02:20:18',
  'True',
  '13.167'),
 ('30/08/2016 02:25:06',
  '0.617',
  '30/08/2016 02:25:14',
  '5.720',
  '30/08/2016 02:25:18',
  '0.714',
  '30/08/2016 02:25:19',
  'True',
  '14.513'),
 ('30/08/2016 02:30:06',
  '0.623',
  '30/08/2016 02:30:14',
  '5.044',
  '30/08/2016 02:30:17',
  '0.693',
  '30/08/2016 02:30:18',
  'True',
  '14.179'),
 ('30/08/2016 02:35:06',
  '0.622',
  '30/08/2016 02:35:13',
  '4.835',
  '30/08/2016 02:35:16',
  '0.695',
  '30/08/2016 02:35:17',
  'True',
  '13.016'),
 ('30/08/2016 02:40:06',
  '0.624',
  '30/08/2016 02:40:13',
  '4.731',
  '30/08/2016 02:40:18',
  '0.780',
  '30/08/2016 02:40:19',
  'True',
  '15.244'),
 ('30/08/2016 02:45:07',
  '0.615',
  '30/08/2016 02:45:12',
  '3.541',
  '30/08/2016 02:45:17',
  '0.974',
  '30/08/2016 02:45:18',
  'True',
  '13.507'),
 ('30/08/2016 02:50:07',
  '0.621',
  '30/08/2016 02:50:13',
  '4.382',
  '30/08/2016 02:50:17',
  '0.706',
  '30/08/2016 02:50:18',
  'True',
  '12.868'),
 ('30/08/2016 02:55:05',
  '0.612',
  '30/08/2016 02:55:12',
  '4.839',
  '30/08/2016 02:55:16',
  '0.957',
  '30/08/2016 02:55:17',
  'True',
  '13.498'),
 ('30/08/2016 03:00:06',
  '0.615',
  '30/08/2016 03:00:13',
  '4.799',
  '30/08/2016 03:00:17',
  '0.694',
  '30/08/2016 03:00:19',
  'True',
  '14.879'),
 ('30/08/2016 03:05:06',
  '0.614',
  '30/08/2016 03:05:13',
  '4.289',
  '30/08/2016 03:05:17',
  '0.996',
  '30/08/2016 03:05:19',
  'True',
  '14.896'),
 ('30/08/2016 03:10:06',
  '0.622',
  '30/08/2016 03:10:12',
  '3.551',
  '30/08/2016 03:10:15',
  '0.695',
  '30/08/2016 03:10:17',
  'True',
  '12.697'),
 ('30/08/2016 03:15:06',
  '0.618',
  '30/08/2016 03:15:12',
  '3.500',
  '30/08/2016 03:15:15',
  '0.775',
  '30/08/2016 03:15:17',
  'True',
  '12.511'),
 ('30/08/2016 03:20:06',
  '0.618',
  '30/08/2016 03:20:12',
  '3.836',
  '30/08/2016 03:20:15',
  '0.681',
  '30/08/2016 03:20:17',
  'True',
  '12.655'),
 ('30/08/2016 03:25:06',
  '0.618',
  '30/08/2016 03:25:14',
  '5.467',
  '30/08/2016 03:25:18',
  '1.332',
  '30/08/2016 03:25:20',
  'True',
  '15.205'),
 ('30/08/2016 03:30:06',
  '0.619',
  '30/08/2016 03:30:12',
  '4.156',
  '30/08/2016 03:30:17',
  '1.558',
  '30/08/2016 03:30:20',
  'True',
  '15.376'),
 ('30/08/2016 03:35:07',
  '0.626',
  '30/08/2016 03:35:15',
  '5.408',
  '30/08/2016 03:35:18',
  '0.689',
  '30/08/2016 03:35:19',
  'True',
  '14.448'),
 ('30/08/2016 03:40:06',
  '0.607',
  '30/08/2016 03:40:12',
  '4.348',
  '30/08/2016 03:40:16',
  '0.865',
  '30/08/2016 03:40:19',
  'True',
  '15.007'),
 ('30/08/2016 03:45:06',
  '0.619',
  '30/08/2016 03:45:11',
  '3.611',
  '30/08/2016 03:45:15',
  '0.707',
  '30/08/2016 03:45:16',
  'True',
  '12.730'),
 ('30/08/2016 03:50:06',
  '0.617',
  '30/08/2016 03:50:13',
  '4.711',
  '30/08/2016 03:50:17',
  '0.924',
  '30/08/2016 03:50:19',
  'True',
  '14.264'),
 ('30/08/2016 03:55:06',
  '0.619',
  '30/08/2016 03:55:12',
  '3.877',
  '30/08/2016 03:55:16',
  '0.727',
  '30/08/2016 03:55:17',
  'True',
  '12.738'),
 ('30/08/2016 04:00:06',
  '0.632',
  '30/08/2016 04:00:13',
  '4.476',
  '30/08/2016 04:00:16',
  '0.682',
  '30/08/2016 04:00:17',
  'True',
  '13.134'),
 ('30/08/2016 04:05:06',
  '0.619',
  '30/08/2016 04:05:13',
  '4.570',
  '30/08/2016 04:05:16',
  '0.817',
  '30/08/2016 04:05:18',
  'True',
  '13.065'),
 ('30/08/2016 04:10:06',
  '0.616',
  '30/08/2016 04:10:13',
  '4.329',
  '30/08/2016 04:10:18',
  '0.780',
  '30/08/2016 04:10:20',
  'True',
  '15.766'),
 ('30/08/2016 04:15:06',
  '0.616',
  '30/08/2016 04:15:12',
  '3.584',
  '30/08/2016 04:15:15',
  '0.690',
  '30/08/2016 04:15:17',
  'True',
  '13.387'),
 ('30/08/2016 04:20:06',
  '0.608',
  '30/08/2016 04:20:12',
  '4.293',
  '30/08/2016 04:20:16',
  '1.060',
  '30/08/2016 04:20:18',
  'True',
  '13.582'),
 ('30/08/2016 04:25:07',
  '0.619',
  '30/08/2016 04:25:13',
  '4.104',
  '30/08/2016 04:25:16',
  '0.702',
  '30/08/2016 04:25:18',
  'True',
  '13.016'),
 ('30/08/2016 04:30:06',
  '0.606',
  '30/08/2016 04:30:13',
  '4.238',
  '30/08/2016 04:30:17',
  '1.673',
  '30/08/2016 04:30:18',
  'True',
  '14.006'),
 ('30/08/2016 04:35:06',
  '0.623',
  '30/08/2016 04:35:12',
  '4.141',
  '30/08/2016 04:35:16',
  '0.796',
  '30/08/2016 04:35:17',
  'True',
  '12.905'),
 ('30/08/2016 04:40:06',
  '0.610',
  '30/08/2016 04:40:13',
  '4.046',
  '30/08/2016 04:40:16',
  '1.198',
  '30/08/2016 04:40:18',
  'True',
  '14.616'),
 ('30/08/2016 04:45:06',
  '0.604',
  '30/08/2016 04:45:12',
  '3.544',
  '30/08/2016 04:45:15',
  '0.689',
  '30/08/2016 04:45:17',
  'True',
  '12.571'),
 ('30/08/2016 04:50:07',
  '0.617',
  '30/08/2016 04:50:13',
  '4.521',
  '30/08/2016 04:50:17',
  '0.922',
  '30/08/2016 04:50:18',
  'True',
  '13.510'),
 ('30/08/2016 04:55:07',
  '0.626',
  '30/08/2016 04:55:13',
  '3.638',
  '30/08/2016 04:55:16',
  '0.699',
  '30/08/2016 04:55:18',
  'True',
  '12.720'),
 ('30/08/2016 05:00:06',
  '0.626',
  '30/08/2016 05:00:13',
  '3.624',
  '30/08/2016 05:00:17',
  '0.801',
  '30/08/2016 05:00:18',
  'True',
  '13.651'),
 ('30/08/2016 05:05:06',
  '0.618',
  '30/08/2016 05:05:13',
  '5.228',
  '30/08/2016 05:05:16',
  '0.695',
  '30/08/2016 05:05:18',
  'True',
  '13.724'),
 ('30/08/2016 05:10:06',
  '0.623',
  '30/08/2016 05:10:14',
  '5.800',
  '30/08/2016 05:10:18',
  '0.862',
  '30/08/2016 05:10:19',
  'True',
  '14.893'),
 ('30/08/2016 05:15:06',
  '0.615',
  '30/08/2016 05:15:12',
  '3.696',
  '30/08/2016 05:15:16',
  '0.690',
  '30/08/2016 05:15:18',
  'True',
  '14.029'),
 ('30/08/2016 05:20:07',
  '0.608',
  '30/08/2016 05:20:13',
  '4.298',
  '30/08/2016 05:20:18',
  '1.092',
  '30/08/2016 05:20:19',
  'True',
  '14.618'),
 ('30/08/2016 05:25:06',
  '0.613',
  '30/08/2016 05:25:12',
  '3.513',
  '30/08/2016 05:25:16',
  '0.912',
  '30/08/2016 05:25:17',
  'True',
  '13.090'),
 ('30/08/2016 05:30:07',
  '0.612',
  '30/08/2016 05:30:14',
  '4.802',
  '30/08/2016 05:30:17',
  '0.704',
  '30/08/2016 05:30:18',
  'True',
  '13.338'),
 ('30/08/2016 05:35:06',
  '0.614',
  '30/08/2016 05:35:14',
  '5.220',
  '30/08/2016 05:35:17',
  '0.712',
  '30/08/2016 05:35:19',
  'True',
  '15.047'),
 ('30/08/2016 05:40:06',
  '0.618',
  '30/08/2016 05:40:12',
  '4.588',
  '30/08/2016 05:40:16',
  '0.702',
  '30/08/2016 05:40:18',
  'True',
  '14.096'),
 ('30/08/2016 05:45:07',
  '0.616',
  '30/08/2016 05:45:14',
  '4.609',
  '30/08/2016 05:45:17',
  '0.701',
  '30/08/2016 05:45:18',
  'True',
  '13.930'),
 ('30/08/2016 05:50:06',
  '0.620',
  '30/08/2016 05:50:14',
  '4.844',
  '30/08/2016 05:50:19',
  '1.183',
  '30/08/2016 05:50:21',
  'True',
  '16.147'),
 ('30/08/2016 05:55:06',
  '0.642',
  '30/08/2016 05:55:12',
  '3.665',
  '30/08/2016 05:55:16',
  '0.995',
  '30/08/2016 05:55:18',
  'True',
  '13.630'),
 ('30/08/2016 06:00:07',
  '0.613',
  '30/08/2016 06:00:13',
  '4.253',
  '30/08/2016 06:00:17',
  '0.693',
  '30/08/2016 06:00:18',
  'True',
  '13.322'),
 ('30/08/2016 06:05:06',
  '0.607',
  '30/08/2016 06:05:12',
  '3.606',
  '30/08/2016 06:05:16',
  '0.698',
  '30/08/2016 06:05:17',
  'True',
  '12.881'),
 ('30/08/2016 06:10:06',
  '0.619',
  '30/08/2016 06:10:12',
  '4.241',
  '30/08/2016 06:10:17',
  '1.291',
  '30/08/2016 06:10:19',
  'True',
  '15.188'),
 ('30/08/2016 06:15:06',
  '0.616',
  '30/08/2016 06:15:12',
  '4.094',
  '30/08/2016 06:15:18',
  '1.243',
  '30/08/2016 06:15:19',
  'True',
  '14.888'),
 ('30/08/2016 06:20:06',
  '0.627',
  '30/08/2016 06:20:13',
  '3.830',
  '30/08/2016 06:20:16',
  '0.732',
  '30/08/2016 06:20:17',
  'True',
  '13.194'),
 ('30/08/2016 06:25:07',
  '0.617',
  '30/08/2016 06:25:14',
  '4.593',
  '30/08/2016 06:25:18',
  '0.731',
  '30/08/2016 06:25:20',
  'True',
  '14.856'),
 ('30/08/2016 06:30:06',
  '0.619',
  '30/08/2016 06:30:12',
  '3.561',
  '30/08/2016 06:30:16',
  '1.319',
  '30/08/2016 06:30:17',
  'True',
  '13.327'),
 ('30/08/2016 06:35:07',
  '0.615',
  '30/08/2016 06:35:12',
  '3.539',
  '30/08/2016 06:35:17',
  '1.718',
  '30/08/2016 06:35:19',
  'True',
  '13.795'),
 ('30/08/2016 06:40:06',
  '0.623',
  '30/08/2016 06:40:13',
  '4.479',
  '30/08/2016 06:40:17',
  '0.725',
  '30/08/2016 06:40:19',
  'True',
  '14.537'),
 ('30/08/2016 06:45:06',
  '0.623',
  '30/08/2016 06:45:13',
  '4.592',
  '30/08/2016 06:45:17',
  '0.690',
  '30/08/2016 06:45:19',
  'True',
  '14.493'),
 ('30/08/2016 06:50:06',
  '0.622',
  '30/08/2016 06:50:14',
  '5.779',
  '30/08/2016 06:50:17',
  '0.716',
  '30/08/2016 06:50:19',
  'True',
  '15.154'),
 ('30/08/2016 06:55:07',
  '0.615',
  '30/08/2016 06:55:15',
  '6.345',
  '30/08/2016 06:55:19',
  '1.081',
  '30/08/2016 06:55:21',
  'True',
  '15.935'),
 ('30/08/2016 07:00:06',
  '0.615',
  '30/08/2016 07:00:12',
  '3.511',
  '30/08/2016 07:00:15',
  '0.687',
  '30/08/2016 07:00:17',
  'True',
  '12.239'),
 ('30/08/2016 07:05:06',
  '0.612',
  '30/08/2016 07:05:13',
  '4.221',
  '30/08/2016 07:05:16',
  '0.904',
  '30/08/2016 07:05:17',
  'True',
  '13.484'),
 ('30/08/2016 07:10:06',
  '0.614',
  '30/08/2016 07:10:11',
  '3.575',
  '30/08/2016 07:10:15',
  '0.688',
  '30/08/2016 07:10:16',
  'True',
  '12.438'),
 ('30/08/2016 07:15:06',
  '0.611',
  '30/08/2016 07:15:14',
  '5.428',
  '30/08/2016 07:15:19',
  '0.830',
  '30/08/2016 07:15:20',
  'True',
  '16.386'),
 ('30/08/2016 07:20:06',
  '0.624',
  '30/08/2016 07:20:13',
  '4.004',
  '30/08/2016 07:20:16',
  '0.696',
  '30/08/2016 07:20:17',
  'True',
  '12.889'),
 ('30/08/2016 07:25:06',
  '0.616',
  '30/08/2016 07:25:14',
  '5.415',
  '30/08/2016 07:25:17',
  '0.696',
  '30/08/2016 07:25:18',
  'True',
  '14.235'),
 ('30/08/2016 07:30:06',
  '0.608',
  '30/08/2016 07:30:11',
  '3.527',
  '30/08/2016 07:30:15',
  '0.713',
  '30/08/2016 07:30:16',
  'True',
  '12.584'),
 ('30/08/2016 07:35:06',
  '0.625',
  '30/08/2016 07:35:12',
  '4.324',
  '30/08/2016 07:35:16',
  '1.203',
  '30/08/2016 07:35:18',
  'True',
  '14.103'),
 ('30/08/2016 07:40:07',
  '0.618',
  '30/08/2016 07:40:12',
  '3.553',
  '30/08/2016 07:40:16',
  '0.997',
  '30/08/2016 07:40:17',
  'True',
  '12.965'),
 ('30/08/2016 07:45:06',
  '0.623',
  '30/08/2016 07:45:13',
  '4.581',
  '30/08/2016 07:45:16',
  '0.686',
  '30/08/2016 07:45:17',
  'True',
  '13.297'),
 ('30/08/2016 07:50:06',
  '0.623',
  '30/08/2016 07:50:13',
  '4.617',
  '30/08/2016 07:50:16',
  '0.717',
  '30/08/2016 07:50:18',
  'True',
  '13.477'),
 ('30/08/2016 07:55:06',
  '0.617',
  '30/08/2016 07:55:14',
  '5.145',
  '30/08/2016 07:55:18',
  '0.692',
  '30/08/2016 07:55:19',
  'True',
  '14.407'),
 ('30/08/2016 08:00:07',
  '0.611',
  '30/08/2016 08:00:12',
  '3.579',
  '30/08/2016 08:00:15',
  '1.010',
  '30/08/2016 08:00:17',
  'True',
  '12.873'),
 ('30/08/2016 08:05:06',
  '0.614',
  '30/08/2016 08:05:12',
  '4.118',
  '30/08/2016 08:05:16',
  '0.912',
  '30/08/2016 08:05:18',
  'True',
  '13.268'),
 ('30/08/2016 08:10:06',
  '0.617',
  '30/08/2016 08:10:12',
  '3.535',
  '30/08/2016 08:10:15',
  '1.231',
  '30/08/2016 08:10:17',
  'True',
  '12.846'),
 ('30/08/2016 08:15:07',
  '0.617',
  '30/08/2016 08:15:13',
  '4.372',
  '30/08/2016 08:15:17',
  '1.491',
  '30/08/2016 08:15:19',
  'True',
  '14.294'),
 ('30/08/2016 08:20:06',
  '0.620',
  '30/08/2016 08:20:11',
  '3.905',
  '30/08/2016 08:20:16',
  '0.710',
  '30/08/2016 08:20:17',
  'True',
  '13.554'),
 ('30/08/2016 08:25:06',
  '0.614',
  '30/08/2016 08:25:13',
  '5.023',
  '30/08/2016 08:25:18',
  '1.032',
  '30/08/2016 08:25:19',
  'True',
  '14.672'),
 ('30/08/2016 08:30:07',
  '0.616',
  '30/08/2016 08:30:14',
  '5.114',
  '30/08/2016 08:30:18',
  '0.890',
  '30/08/2016 08:30:20',
  'True',
  '15.385'),
 ('30/08/2016 08:35:06',
  '0.612',
  '30/08/2016 08:35:11',
  '3.562',
  '30/08/2016 08:35:14',
  '0.688',
  '30/08/2016 08:35:15',
  'True',
  '11.684'),
 ('30/08/2016 08:40:06',
  '0.620',
  '30/08/2016 08:40:12',
  '3.608',
  '30/08/2016 08:40:15',
  '0.730',
  '30/08/2016 08:40:18',
  'True',
  '13.426'),
 ('30/08/2016 08:45:07',
  '0.623',
  '30/08/2016 08:45:14',
  '5.056',
  '30/08/2016 08:45:19',
  '1.051',
  '30/08/2016 08:45:20',
  'True',
  '15.057'),
 ('30/08/2016 08:50:07',
  '0.620',
  '30/08/2016 08:50:13',
  '4.344',
  '30/08/2016 08:50:18',
  '0.987',
  '30/08/2016 08:50:20',
  'True',
  '15.412'),
 ('30/08/2016 08:55:07',
  '0.617',
  '30/08/2016 08:55:13',
  '4.056',
  '30/08/2016 08:55:16',
  '0.705',
  '30/08/2016 08:55:17',
  'True',
  '12.567'),
 ('30/08/2016 09:00:06',
  '0.619',
  '30/08/2016 09:00:13',
  '4.800',
  '30/08/2016 09:00:16',
  '0.683',
  '30/08/2016 09:00:17',
  'True',
  '13.349'),
 ('30/08/2016 09:05:07',
  '0.620',
  '30/08/2016 09:05:13',
  '3.968',
  '30/08/2016 09:05:16',
  '0.704',
  '30/08/2016 09:05:18',
  'True',
  '13.006'),
 ('30/08/2016 09:10:06',
  '0.615',
  '30/08/2016 09:10:12',
  '3.770',
  '30/08/2016 09:10:17',
  '0.686',
  '30/08/2016 09:10:18',
  'True',
  '13.874'),
 ('30/08/2016 09:15:06',
  '0.620',
  '30/08/2016 09:15:12',
  '4.042',
  '30/08/2016 09:15:17',
  '0.837',
  '30/08/2016 09:15:18',
  'True',
  '14.462'),
 ('30/08/2016 09:20:06',
  '0.614',
  '30/08/2016 09:20:12',
  '3.515',
  '30/08/2016 09:20:15',
  '0.687',
  '30/08/2016 09:20:17',
  'True',
  '12.633'),
 ('30/08/2016 09:25:06',
  '0.615',
  '30/08/2016 09:25:13',
  '4.842',
  '30/08/2016 09:25:17',
  '0.708',
  '30/08/2016 09:25:19',
  'True',
  '14.670'),
 ('30/08/2016 09:30:07',
  '0.614',
  '30/08/2016 09:30:13',
  '4.675',
  '30/08/2016 09:30:17',
  '0.684',
  '30/08/2016 09:30:18',
  'True',
  '13.867'),
 ('30/08/2016 09:35:06',
  '0.624',
  '30/08/2016 09:35:13',
  '3.736',
  '30/08/2016 09:35:16',
  '0.687',
  '30/08/2016 09:35:18',
  'True',
  '13.643'),
 ('30/08/2016 09:40:06',
  '0.605',
  '30/08/2016 09:40:12',
  '4.255',
  '30/08/2016 09:40:16',
  '0.809',
  '30/08/2016 09:40:18',
  'True',
  '13.951'),
 ('30/08/2016 09:45:06',
  '0.620',
  '30/08/2016 09:45:11',
  '3.614',
  '30/08/2016 09:45:14',
  '0.691',
  '30/08/2016 09:45:16',
  'True',
  '12.040'),
 ('30/08/2016 09:50:07',
  '0.623',
  '30/08/2016 09:50:12',
  '3.572',
  '30/08/2016 09:50:16',
  '0.717',
  '30/08/2016 09:50:17',
  'True',
  '12.662'),
 ('30/08/2016 09:55:06',
  '0.626',
  '30/08/2016 09:55:12',
  '3.700',
  '30/08/2016 09:55:15',
  '0.691',
  '30/08/2016 09:55:17',
  'True',
  '12.522'),
 ('30/08/2016 10:00:06',
  '0.618',
  '30/08/2016 10:00:13',
  '4.542',
  '30/08/2016 10:00:16',
  '0.770',
  '30/08/2016 10:00:17',
  'True',
  '13.228'),
 ('30/08/2016 10:05:06',
  '0.611',
  '30/08/2016 10:05:13',
  '4.488',
  '30/08/2016 10:05:17',
  '0.703',
  '30/08/2016 10:05:18',
  'True',
  '13.983'),
 ('30/08/2016 10:10:06',
  '0.608',
  '30/08/2016 10:10:12',
  '3.894',
  '30/08/2016 10:10:16',
  '0.977',
  '30/08/2016 10:10:18',
  'True',
  '14.329'),
 ('30/08/2016 10:15:06',
  '0.629',
  '30/08/2016 10:15:12',
  '4.508',
  '30/08/2016 10:15:16',
  '0.705',
  '30/08/2016 10:15:17',
  'True',
  '13.400'),
 ('30/08/2016 10:20:06',
  '0.612',
  '30/08/2016 10:20:14',
  '4.305',
  '30/08/2016 10:20:17',
  '0.727',
  '30/08/2016 10:20:19',
  'True',
  '14.675'),
 ('30/08/2016 10:25:07',
  '0.616',
  '30/08/2016 10:25:14',
  '4.549',
  '30/08/2016 10:25:18',
  '0.700',
  '30/08/2016 10:25:20',
  'True',
  '15.021'),
 ('30/08/2016 10:30:06',
  '0.612',
  '30/08/2016 10:30:14',
  '4.936',
  '30/08/2016 10:30:17',
  '0.703',
  '30/08/2016 10:30:19',
  'True',
  '14.627'),
 ('30/08/2016 10:35:06',
  '0.619',
  '30/08/2016 10:35:12',
  '4.543',
  '30/08/2016 10:35:16',
  '0.770',
  '30/08/2016 10:35:17',
  'True',
  '13.387'),
 ('30/08/2016 10:40:06',
  '0.624',
  '30/08/2016 10:40:13',
  '4.235',
  '30/08/2016 10:40:16',
  '0.712',
  '30/08/2016 10:40:18',
  'True',
  '13.481'),
 ('30/08/2016 10:45:07',
  '0.621',
  '30/08/2016 10:45:12',
  '3.597',
  '30/08/2016 10:45:16',
  '0.680',
  '30/08/2016 10:45:17',
  'True',
  '12.755'),
 ('30/08/2016 10:50:06',
  '0.605',
  '30/08/2016 10:50:14',
  '5.296',
  '30/08/2016 10:50:19',
  '0.691',
  '30/08/2016 10:50:20',
  'True',
  '15.764'),
 ('30/08/2016 10:55:06',
  '0.623',
  '30/08/2016 10:55:13',
  '4.543',
  '30/08/2016 10:55:17',
  '0.688',
  '30/08/2016 10:55:18',
  'True',
  '13.867'),
 ('30/08/2016 11:00:06',
  '0.623',
  '30/08/2016 11:00:13',
  '5.150',
  '30/08/2016 11:00:17',
  '0.944',
  '30/08/2016 11:00:19',
  'True',
  '15.422'),
 ('30/08/2016 11:05:06',
  '0.622',
  '30/08/2016 11:05:13',
  '4.264',
  '30/08/2016 11:05:17',
  '1.162',
  '30/08/2016 11:05:18',
  'True',
  '13.930'),
 ('30/08/2016 11:10:06',
  '0.613',
  '30/08/2016 11:10:12',
  '4.555',
  '30/08/2016 11:10:17',
  '0.865',
  '30/08/2016 11:10:18',
  'True',
  '14.837'),
 ('30/08/2016 11:15:06',
  '0.627',
  '30/08/2016 11:15:12',
  '3.917',
  '30/08/2016 11:15:16',
  '1.673',
  '30/08/2016 11:15:17',
  'True',
  '13.579'),
 ('30/08/2016 11:20:07',
  '0.611',
  '30/08/2016 11:20:12',
  '3.947',
  '30/08/2016 11:20:16',
  '1.075',
  '30/08/2016 11:20:18',
  'True',
  '13.639'),
 ('30/08/2016 11:25:06',
  '0.613',
  '30/08/2016 11:25:12',
  '3.674',
  '30/08/2016 11:25:16',
  '0.949',
  '30/08/2016 11:25:17',
  'True',
  '12.982'),
 ('30/08/2016 11:30:06',
  '0.615',
  '30/08/2016 11:30:13',
  '5.100',
  '30/08/2016 11:30:18',
  '0.704',
  '30/08/2016 11:30:19',
  'True',
  '15.378'),
 ('30/08/2016 11:35:06',
  '0.613',
  '30/08/2016 11:35:12',
  '4.127',
  '30/08/2016 11:35:17',
  '0.714',
  '30/08/2016 11:35:18',
  'True',
  '13.934'),
 ('30/08/2016 11:40:06',
  '0.607',
  '30/08/2016 11:40:13',
  '4.919',
  '30/08/2016 11:40:17',
  '1.668',
  '30/08/2016 11:40:19',
  'True',
  '15.182'),
 ('30/08/2016 11:45:06',
  '0.617',
  '30/08/2016 11:45:12',
  '3.615',
  '30/08/2016 11:45:15',
  '0.695',
  '30/08/2016 11:45:17',
  'True',
  '12.666'),
 ('30/08/2016 11:50:07',
  '0.617',
  '30/08/2016 11:50:13',
  '4.388',
  '30/08/2016 11:50:17',
  '0.698',
  '30/08/2016 11:50:18',
  'True',
  '13.278'),
 ('30/08/2016 11:55:06',
  '0.615',
  '30/08/2016 11:55:11',
  '3.503',
  '30/08/2016 11:55:14',
  '0.684',
  '30/08/2016 11:55:15',
  'True',
  '11.717'),
 ('30/08/2016 12:00:07',
  '0.616',
  '30/08/2016 12:00:13',
  '4.280',
  '30/08/2016 12:00:18',
  '0.698',
  '30/08/2016 12:00:20',
  'True',
  '14.889'),
 ('30/08/2016 12:05:07',
  '0.611',
  '30/08/2016 12:05:12',
  '3.873',
  '30/08/2016 12:05:16',
  '0.690',
  '30/08/2016 12:05:17',
  'True',
  '12.926'),
 ('30/08/2016 12:10:06',
  '0.614',
  '30/08/2016 12:10:14',
  '5.439',
  '30/08/2016 12:10:18',
  '1.322',
  '30/08/2016 12:10:19',
  'True',
  '14.980'),
 ('30/08/2016 12:15:06',
  '0.606',
  '30/08/2016 12:15:12',
  '3.876',
  '30/08/2016 12:15:16',
  '0.705',
  '30/08/2016 12:15:18',
  'True',
  '14.198'),
 ('30/08/2016 12:20:07',
  '0.627',
  '30/08/2016 12:20:13',
  '3.665',
  '30/08/2016 12:20:17',
  '1.159',
  '30/08/2016 12:20:19',
  'True',
  '13.885'),
 ('30/08/2016 12:25:06',
  '0.614',
  '30/08/2016 12:25:13',
  '4.293',
  '30/08/2016 12:25:17',
  '1.377',
  '30/08/2016 12:25:19',
  'True',
  '14.414'),
 ('30/08/2016 12:30:07',
  '0.615',
  '30/08/2016 12:30:13',
  '3.706',
  '30/08/2016 12:30:17',
  '1.272',
  '30/08/2016 12:30:18',
  'True',
  '13.760'),
 ('30/08/2016 12:35:06',
  '0.618',
  '30/08/2016 12:35:12',
  '3.601',
  '30/08/2016 12:35:16',
  '1.052',
  '30/08/2016 12:35:17',
  'True',
  '13.202'),
 ('30/08/2016 12:40:07',
  '0.622',
  '30/08/2016 12:40:13',
  '4.589',
  '30/08/2016 12:40:17',
  '0.693',
  '30/08/2016 12:40:18',
  'True',
  '13.475'),
 ('30/08/2016 12:45:07',
  '0.620',
  '30/08/2016 12:45:13',
  '4.018',
  '30/08/2016 12:45:16',
  '0.706',
  '30/08/2016 12:45:17',
  'True',
  '12.690'),
 ('30/08/2016 12:50:06',
  '0.631',
  '30/08/2016 12:50:14',
  '5.289',
  '30/08/2016 12:50:18',
  '1.297',
  '30/08/2016 12:50:20',
  'True',
  '15.730'),
 ('30/08/2016 12:55:07',
  '0.622',
  '30/08/2016 12:55:13',
  '3.599',
  '30/08/2016 12:55:17',
  '0.857',
  '30/08/2016 12:55:18',
  'True',
  '13.369'),
 ('30/08/2016 13:00:06',
  '0.608',
  '30/08/2016 13:00:13',
  '4.840',
  '30/08/2016 13:00:17',
  '1.025',
  '30/08/2016 13:00:19',
  'True',
  '14.619'),
 ('30/08/2016 13:05:07',
  '0.622',
  '30/08/2016 13:05:13',
  '3.620',
  '30/08/2016 13:05:17',
  '0.690',
  '30/08/2016 13:05:19',
  'True',
  '13.750'),
 ('30/08/2016 13:10:07',
  '0.609',
  '30/08/2016 13:10:12',
  '3.578',
  '30/08/2016 13:10:16',
  '0.687',
  '30/08/2016 13:10:18',
  'True',
  '13.846'),
 ('30/08/2016 13:15:06',
  '0.611',
  '30/08/2016 13:15:13',
  '4.584',
  '30/08/2016 13:15:16',
  '0.705',
  '30/08/2016 13:15:17',
  'True',
  '13.115'),
 ('30/08/2016 13:20:06',
  '0.612',
  '30/08/2016 13:20:12',
  '4.137',
  '30/08/2016 13:20:16',
  '0.701',
  '30/08/2016 13:20:18',
  'True',
  '13.831'),
 ('30/08/2016 13:25:07',
  '0.613',
  '30/08/2016 13:25:12',
  '3.808',
  '30/08/2016 13:25:16',
  '0.787',
  '30/08/2016 13:25:18',
  'True',
  '13.465'),
 ('30/08/2016 13:30:06',
  '0.630',
  '30/08/2016 13:30:12',
  '3.654',
  '30/08/2016 13:30:15',
  '0.692',
  '30/08/2016 13:30:16',
  'True',
  '12.094'),
 ('30/08/2016 13:35:07',
  '0.609',
  '30/08/2016 13:35:15',
  '5.644',
  '30/08/2016 13:35:18',
  '0.675',
  '30/08/2016 13:35:19',
  'True',
  '14.391'),
 ('30/08/2016 13:40:06',
  '0.609',
  '30/08/2016 13:40:12',
  '3.564',
  '30/08/2016 13:40:15',
  '0.687',
  '30/08/2016 13:40:17',
  'True',
  '12.838'),
 ('30/08/2016 13:45:07',
  '0.600',
  '30/08/2016 13:45:12',
  '4.000',
  '30/08/2016 13:45:16',
  '0.698',
  '30/08/2016 13:45:18',
  'True',
  '13.157'),
 ('30/08/2016 13:50:06',
  '0.616',
  '30/08/2016 13:50:13',
  '4.300',
  '30/08/2016 13:50:17',
  '1.053',
  '30/08/2016 13:50:19',
  'True',
  '15.082'),
 ('30/08/2016 13:55:07',
  '0.604',
  '30/08/2016 13:55:13',
  '4.004',
  '30/08/2016 13:55:17',
  '0.697',
  '30/08/2016 13:55:19',
  'True',
  '14.511'),
 ('30/08/2016 14:00:06',
  '0.624',
  '30/08/2016 14:00:12',
  '3.542',
  '30/08/2016 14:00:15',
  '0.689',
  '30/08/2016 14:00:16',
  'True',
  '12.030'),
 ('30/08/2016 14:05:07',
  '0.618',
  '30/08/2016 14:05:13',
  '3.978',
  '30/08/2016 14:05:17',
  '1.076',
  '30/08/2016 14:05:18',
  'True',
  '13.474'),
 ('30/08/2016 14:10:06',
  '0.621',
  '30/08/2016 14:10:13',
  '4.989',
  '30/08/2016 14:10:17',
  '0.690',
  '30/08/2016 14:10:18',
  'True',
  '14.252'),
 ('30/08/2016 14:15:06',
  '0.611',
  '30/08/2016 14:15:12',
  '4.220',
  '30/08/2016 14:15:17',
  '0.693',
  '30/08/2016 14:15:19',
  'True',
  '14.690'),
 ('30/08/2016 14:20:07',
  '0.613',
  '30/08/2016 14:20:15',
  '6.392',
  '30/08/2016 14:20:20',
  '1.468',
  '30/08/2016 14:20:22',
  'True',
  '17.038'),
 ('30/08/2016 14:25:07',
  '0.614',
  '30/08/2016 14:25:13',
  '4.196',
  '30/08/2016 14:25:18',
  '0.800',
  '30/08/2016 14:25:20',
  'True',
  '14.879'),
 ('30/08/2016 14:30:07',
  '0.614',
  '30/08/2016 14:30:12',
  '3.543',
  '30/08/2016 14:30:16',
  '0.875',
  '30/08/2016 14:30:17',
  'True',
  '12.596'),
 ('30/08/2016 14:35:06',
  '0.620',
  '30/08/2016 14:35:12',
  '3.590',
  '30/08/2016 14:35:15',
  '1.155',
  '30/08/2016 14:35:17',
  'True',
  '12.935'),
 ('30/08/2016 14:40:07',
  '0.629',
  '30/08/2016 14:40:14',
  '5.972',
  '30/08/2016 14:40:19',
  '0.686',
  '30/08/2016 14:40:20',
  'True',
  '15.444'),
 ('30/08/2016 14:45:07',
  '0.615',
  '30/08/2016 14:45:13',
  '4.410',
  '30/08/2016 14:45:17',
  '0.683',
  '30/08/2016 14:45:18',
  'True',
  '13.993'),
 ('30/08/2016 14:50:06',
  '0.609',
  '30/08/2016 14:50:12',
  '3.862',
  '30/08/2016 14:50:16',
  '0.702',
  '30/08/2016 14:50:17',
  'True',
  '12.879'),
 ('30/08/2016 14:55:06',
  '0.611',
  '30/08/2016 14:55:13',
  '5.289',
  '30/08/2016 14:55:17',
  '1.581',
  '30/08/2016 14:55:19',
  'True',
  '15.610'),
 ('30/08/2016 15:00:06',
  '0.650',
  '30/08/2016 15:00:14',
  '4.854',
  '30/08/2016 15:00:19',
  '0.715',
  '30/08/2016 15:00:21',
  'True',
  '16.707'),
 ('30/08/2016 15:05:07',
  '0.661',
  '30/08/2016 15:05:14',
  '5.014',
  '30/08/2016 15:05:18',
  '0.863',
  '30/08/2016 15:05:20',
  'True',
  '15.179'),
 ('30/08/2016 15:10:07',
  '0.645',
  '30/08/2016 15:10:14',
  '4.855',
  '30/08/2016 15:10:18',
  '0.704',
  '30/08/2016 15:10:20',
  'True',
  '15.194'),
 ('30/08/2016 15:15:06',
  '0.652',
  '30/08/2016 15:15:13',
  '4.287',
  '30/08/2016 15:15:17',
  '0.707',
  '30/08/2016 15:15:18',
  'True',
  '13.786'),
 ('30/08/2016 15:20:07',
  '0.647',
  '30/08/2016 15:20:12',
  '3.769',
  '30/08/2016 15:20:16',
  '0.691',
  '30/08/2016 15:20:18',
  'True',
  '13.628'),
 ('30/08/2016 15:25:06',
  '0.653',
  '30/08/2016 15:25:12',
  '4.132',
  '30/08/2016 15:25:16',
  '0.695',
  '30/08/2016 15:25:17',
  'True',
  '13.597'),
 ('30/08/2016 15:30:06',
  '0.664',
  '30/08/2016 15:30:14',
  '4.601',
  '30/08/2016 15:30:18',
  '0.682',
  '30/08/2016 15:30:19',
  'True',
  '14.861'),
 ('30/08/2016 15:35:06',
  '0.660',
  '30/08/2016 15:35:13',
  '4.730',
  '30/08/2016 15:35:17',
  '0.696',
  '30/08/2016 15:35:18',
  'True',
  '14.179'),
 ('30/08/2016 15:40:07',
  '0.653',
  '30/08/2016 15:40:13',
  '4.147',
  '30/08/2016 15:40:17',
  '1.022',
  '30/08/2016 15:40:19',
  'True',
  '14.374'),
 ('30/08/2016 15:45:06',
  '0.658',
  '30/08/2016 15:45:14',
  '5.506',
  '30/08/2016 15:45:18',
  '0.848',
  '30/08/2016 15:45:19',
  'True',
  '15.189'),
 ('30/08/2016 15:50:07',
  '0.653',
  '30/08/2016 15:50:13',
  '4.275',
  '30/08/2016 15:50:18',
  '0.854',
  '30/08/2016 15:50:20',
  'True',
  '15.085'),
 ('30/08/2016 15:55:07',
  '0.671',
  '30/08/2016 15:55:13',
  '4.596',
  '30/08/2016 15:55:16',
  '0.684',
  '30/08/2016 15:55:18',
  'True',
  '13.228'),
 ('30/08/2016 16:00:07',
  '0.657',
  '30/08/2016 16:00:13',
  '4.375',
  '30/08/2016 16:00:16',
  '0.691',
  '30/08/2016 16:00:18',
  'True',
  '13.501'),
 ('30/08/2016 16:05:07',
  '0.657',
  '30/08/2016 16:05:15',
  '4.722',
  '30/08/2016 16:05:19',
  '0.885',
  '30/08/2016 16:05:21',
  'True',
  '16.654'),
 ('30/08/2016 16:10:06',
  '0.662',
  '30/08/2016 16:10:12',
  '3.550',
  '30/08/2016 16:10:15',
  '0.836',
  '30/08/2016 16:10:18',
  'True',
  '13.659'),
 ('30/08/2016 16:15:07',
  '0.653',
  '30/08/2016 16:15:13',
  '3.570',
  '30/08/2016 16:15:16',
  '0.748',
  '30/08/2016 16:15:17',
  'True',
  '12.524'),
 ('30/08/2016 16:20:06',
  '0.659',
  '30/08/2016 16:20:12',
  '3.821',
  '30/08/2016 16:20:16',
  '0.769',
  '30/08/2016 16:20:18',
  'True',
  '13.825'),
 ('30/08/2016 16:25:07',
  '0.671',
  '30/08/2016 16:25:14',
  '5.606',
  '30/08/2016 16:25:19',
  '0.684',
  '30/08/2016 16:25:20',
  'True',
  '15.876'),
 ('30/08/2016 16:30:06',
  '0.655',
  '30/08/2016 16:30:12',
  '4.430',
  '30/08/2016 16:30:16',
  '1.310',
  '30/08/2016 16:30:17',
  'True',
  '13.632'),
 ('30/08/2016 16:35:06',
  '0.666',
  '30/08/2016 16:35:13',
  '4.215',
  '30/08/2016 16:35:17',
  '1.518',
  '30/08/2016 16:35:19',
  'True',
  '14.728'),
 ('30/08/2016 16:40:07',
  '0.669',
  '30/08/2016 16:40:14',
  '4.002',
  '30/08/2016 16:40:18',
  '0.803',
  '30/08/2016 16:40:20',
  'True',
  '15.027'),
 ('30/08/2016 16:45:07',
  '0.669',
  '30/08/2016 16:45:13',
  '4.004',
  '30/08/2016 16:45:16',
  '0.769',
  '30/08/2016 16:45:18',
  'True',
  '13.600'),
 ('30/08/2016 16:50:06',
  '0.655',
  '30/08/2016 16:50:14',
  '4.327',
  '30/08/2016 16:50:18',
  '1.517',
  '30/08/2016 16:50:21',
  'True',
  '16.711'),
 ('30/08/2016 16:55:07',
  '0.653',
  '30/08/2016 16:55:13',
  '3.810',
  '30/08/2016 16:55:18',
  '0.878',
  '30/08/2016 16:55:19',
  'True',
  '14.670'),
 ('30/08/2016 17:00:06',
  '0.654',
  '30/08/2016 17:00:13',
  '4.814',
  '30/08/2016 17:00:17',
  '1.165',
  '30/08/2016 17:00:18',
  'True',
  '14.472'),
 ('30/08/2016 17:05:07',
  '0.646',
  '30/08/2016 17:05:14',
  '4.702',
  '30/08/2016 17:05:17',
  '1.005',
  '30/08/2016 17:05:19',
  'True',
  '14.387'),
 ('30/08/2016 17:10:07',
  '0.641',
  '30/08/2016 17:10:13',
  '3.854',
  '30/08/2016 17:10:16',
  '0.689',
  '30/08/2016 17:10:17',
  'True',
  '12.638'),
 ('30/08/2016 17:15:06',
  '0.653',
  '30/08/2016 17:15:12',
  '3.539',
  '30/08/2016 17:15:15',
  '0.694',
  '30/08/2016 17:15:17',
  'True',
  '13.684'),
 ('30/08/2016 17:20:07',
  '0.652',
  '30/08/2016 17:20:13',
  '3.567',
  '30/08/2016 17:20:16',
  '1.221',
  '30/08/2016 17:20:18',
  'True',
  '13.055'),
 ('30/08/2016 17:25:07',
  '0.651',
  '30/08/2016 17:25:13',
  '3.792',
  '30/08/2016 17:25:16',
  '0.725',
  '30/08/2016 17:25:17',
  'True',
  '12.960'),
 ('30/08/2016 17:30:06',
  '0.659',
  '30/08/2016 17:30:12',
  '3.577',
  '30/08/2016 17:30:16',
  '1.226',
  '30/08/2016 17:30:17',
  'True',
  '13.218'),
 ('30/08/2016 17:35:06',
  '0.651',
  '30/08/2016 17:35:13',
  '4.161',
  '30/08/2016 17:35:17',
  '0.875',
  '30/08/2016 17:35:19',
  'True',
  '14.394'),
 ('30/08/2016 17:40:07',
  '0.647',
  '30/08/2016 17:40:14',
  '4.413',
  '30/08/2016 17:40:18',
  '0.696',
  '30/08/2016 17:40:19',
  'True',
  '15.264'),
 ('30/08/2016 17:45:07',
  '0.643',
  '30/08/2016 17:45:13',
  '3.668',
  '30/08/2016 17:45:16',
  '0.696',
  '30/08/2016 17:45:18',
  'True',
  '13.005'),
 ('30/08/2016 17:50:07',
  '0.661',
  '30/08/2016 17:50:14',
  '4.743',
  '30/08/2016 17:50:19',
  '0.771',
  '30/08/2016 17:50:20',
  'True',
  '15.400'),
 ('30/08/2016 17:55:06',
  '0.654',
  '30/08/2016 17:55:12',
  '3.599',
  '30/08/2016 17:55:15',
  '1.119',
  '30/08/2016 17:55:17',
  'True',
  '13.322'),
 ('30/08/2016 18:00:07',
  '0.653',
  '30/08/2016 18:00:13',
  '3.983',
  '30/08/2016 18:00:16',
  '0.713',
  '30/08/2016 18:00:18',
  'True',
  '13.718'),
 ('30/08/2016 18:05:07',
  '0.647',
  '30/08/2016 18:05:15',
  '5.066',
  '30/08/2016 18:05:19',
  '0.683',
  '30/08/2016 18:05:21',
  'True',
  '15.712'),
 ('30/08/2016 18:10:06',
  '0.660',
  '30/08/2016 18:10:13',
  '3.931',
  '30/08/2016 18:10:17',
  '0.725',
  '30/08/2016 18:10:18',
  'True',
  '13.725'),
 ('30/08/2016 18:15:06',
  '0.667',
  '30/08/2016 18:15:14',
  '5.860',
  '30/08/2016 18:15:18',
  '0.723',
  '30/08/2016 18:15:20',
  'True',
  '16.592'),
 ('30/08/2016 18:20:06',
  '0.653',
  '30/08/2016 18:20:12',
  '3.715',
  '30/08/2016 18:20:16',
  '0.704',
  '30/08/2016 18:20:18',
  'True',
  '14.363'),
 ('30/08/2016 18:25:07',
  '0.655',
  '30/08/2016 18:25:13',
  '4.046',
  '30/08/2016 18:25:17',
  '0.936',
  '30/08/2016 18:25:19',
  'True',
  '14.703'),
 ('30/08/2016 18:30:06',
  '0.653',
  '30/08/2016 18:30:13',
  '4.206',
  '30/08/2016 18:30:17',
  '0.762',
  '30/08/2016 18:30:18',
  'True',
  '14.134'),
 ('30/08/2016 18:35:06',
  '0.655',
  '30/08/2016 18:35:12',
  '3.661',
  '30/08/2016 18:35:16',
  '0.691',
  '30/08/2016 18:35:17',
  'True',
  '12.956'),
 ('30/08/2016 18:40:06',
  '0.658',
  '30/08/2016 18:40:14',
  '4.998',
  '30/08/2016 18:40:17',
  '0.689',
  '30/08/2016 18:40:18',
  'True',
  '14.268'),
 ('30/08/2016 18:45:07',
  '0.657',
  '30/08/2016 18:45:13',
  '4.747',
  '30/08/2016 18:45:16',
  '0.684',
  '30/08/2016 18:45:18',
  'True',
  '13.635'),
 ('30/08/2016 18:50:06',
  '0.655',
  '30/08/2016 18:50:15',
  '5.831',
  '30/08/2016 18:50:20',
  '1.304',
  '30/08/2016 18:50:22',
  'True',
  '17.828'),
 ('30/08/2016 18:55:07',
  '0.653',
  '30/08/2016 18:55:13',
  '3.633',
  '30/08/2016 18:55:16',
  '0.692',
  '30/08/2016 18:55:18',
  'True',
  '13.086'),
 ('30/08/2016 19:00:07',
  '0.653',
  '30/08/2016 19:00:13',
  '4.225',
  '30/08/2016 19:00:17',
  '0.709',
  '30/08/2016 19:00:19',
  'True',
  '14.320'),
 ('30/08/2016 19:05:07',
  '0.689',
  '30/08/2016 19:05:13',
  '3.531',
  '30/08/2016 19:05:16',
  '0.689',
  '30/08/2016 19:05:18',
  'True',
  '12.825'),
 ('30/08/2016 19:10:07',
  '0.646',
  '30/08/2016 19:10:14',
  '4.934',
  '30/08/2016 19:10:18',
  '0.950',
  '30/08/2016 19:10:20',
  'True',
  '15.734'),
 ('30/08/2016 19:15:06',
  '0.649',
  '30/08/2016 19:15:12',
  '4.065',
  '30/08/2016 19:15:15',
  '0.684',
  '30/08/2016 19:15:16',
  'True',
  '12.639'),
 ('30/08/2016 19:20:06',
  '0.663',
  '30/08/2016 19:20:13',
  '4.072',
  '30/08/2016 19:20:16',
  '0.696',
  '30/08/2016 19:20:18',
  'True',
  '13.580'),
 ('30/08/2016 19:25:07',
  '0.666',
  '30/08/2016 19:25:13',
  '4.354',
  '30/08/2016 19:25:17',
  '0.710',
  '30/08/2016 19:25:19',
  'True',
  '14.551'),
 ('30/08/2016 19:30:07',
  '0.656',
  '30/08/2016 19:30:13',
  '3.670',
  '30/08/2016 19:30:16',
  '0.706',
  '30/08/2016 19:30:18',
  'True',
  '13.457'),
 ('30/08/2016 19:35:06',
  '0.651',
  '30/08/2016 19:35:12',
  '4.117',
  '30/08/2016 19:35:16',
  '1.559',
  '30/08/2016 19:35:18',
  'True',
  '13.888'),
 ('30/08/2016 19:40:07',
  '0.654',
  '30/08/2016 19:40:13',
  '3.578',
  '30/08/2016 19:40:17',
  '1.125',
  '30/08/2016 19:40:19',
  'True',
  '14.958'),
 ('30/08/2016 19:45:07',
  '0.656',
  '30/08/2016 19:45:13',
  '4.202',
  '30/08/2016 19:45:16',
  '0.694',
  '30/08/2016 19:45:18',
  'True',
  '13.326'),
 ('30/08/2016 19:50:06',
  '0.646',
  '30/08/2016 19:50:12',
  '3.677',
  '30/08/2016 19:50:16',
  '0.694',
  '30/08/2016 19:50:18',
  'True',
  '13.621'),
 ('30/08/2016 19:55:06',
  '0.655',
  '30/08/2016 19:55:14',
  '4.611',
  '30/08/2016 19:55:17',
  '0.700',
  '30/08/2016 19:55:19',
  'True',
  '14.738'),
 ('30/08/2016 20:00:06',
  '0.664',
  '30/08/2016 20:00:13',
  '4.804',
  '30/08/2016 20:00:16',
  '0.679',
  '30/08/2016 20:00:17',
  'True',
  '13.678'),
 ('30/08/2016 20:05:06',
  '0.651',
  '30/08/2016 20:05:13',
  '4.677',
  '30/08/2016 20:05:17',
  '0.945',
  '30/08/2016 20:05:18',
  'True',
  '13.769'),
 ('30/08/2016 20:10:07',
  '0.659',
  '30/08/2016 20:10:14',
  '4.353',
  '30/08/2016 20:10:19',
  '1.198',
  '30/08/2016 20:10:20',
  'True',
  '15.511'),
 ('30/08/2016 20:15:06',
  '0.654',
  '30/08/2016 20:15:14',
  '5.310',
  '30/08/2016 20:15:17',
  '0.683',
  '30/08/2016 20:15:18',
  'True',
  '14.267'),
 ('30/08/2016 20:20:06',
  '0.656',
  '30/08/2016 20:20:13',
  '4.721',
  '30/08/2016 20:20:16',
  '0.686',
  '30/08/2016 20:20:18',
  'True',
  '14.397'),
 ('30/08/2016 20:25:06',
  '0.652',
  '30/08/2016 20:25:13',
  '4.795',
  '30/08/2016 20:25:18',
  '1.483',
  '30/08/2016 20:25:21',
  'True',
  '16.724'),
 ('30/08/2016 20:30:06',
  '0.658',
  '30/08/2016 20:30:13',
  '4.848',
  '30/08/2016 20:30:17',
  '0.708',
  '30/08/2016 20:30:19',
  'True',
  '14.922'),
 ('30/08/2016 20:35:07',
  '0.645',
  '30/08/2016 20:35:12',
  '3.584',
  '30/08/2016 20:35:17',
  '0.869',
  '30/08/2016 20:35:18',
  'True',
  '13.688'),
 ('30/08/2016 20:40:06',
  '0.660',
  '30/08/2016 20:40:12',
  '3.721',
  '30/08/2016 20:40:16',
  '0.822',
  '30/08/2016 20:40:18',
  'True',
  '13.558'),
 ('30/08/2016 20:45:07',
  '0.661',
  '30/08/2016 20:45:13',
  '4.501',
  '30/08/2016 20:45:17',
  '0.892',
  '30/08/2016 20:45:18',
  'True',
  '13.951'),
 ('30/08/2016 20:50:07',
  '0.642',
  '30/08/2016 20:50:13',
  '4.383',
  '30/08/2016 20:50:16',
  '0.731',
  '30/08/2016 20:50:18',
  'True',
  '13.009'),
 ('30/08/2016 20:55:07',
  '0.652',
  '30/08/2016 20:55:14',
  '4.673',
  '30/08/2016 20:55:18',
  '0.836',
  '30/08/2016 20:55:20',
  'True',
  '15.552'),
 ('30/08/2016 21:00:06',
  '0.656',
  '30/08/2016 21:00:12',
  '3.792',
  '30/08/2016 21:00:15',
  '0.691',
  '30/08/2016 21:00:17',
  'True',
  '12.872'),
 ('30/08/2016 21:05:07',
  '0.642',
  '30/08/2016 21:05:15',
  '5.423',
  '30/08/2016 21:05:19',
  '0.704',
  '30/08/2016 21:05:20',
  'True',
  '15.860'),
 ('30/08/2016 21:10:06',
  '0.657',
  '30/08/2016 21:10:12',
  '3.622',
  '30/08/2016 21:10:15',
  '0.686',
  '30/08/2016 21:10:17',
  'True',
  '12.850'),
 ('30/08/2016 21:15:07',
  '0.659',
  '30/08/2016 21:15:13',
  '4.002',
  '30/08/2016 21:15:17',
  '0.789',
  '30/08/2016 21:15:19',
  'True',
  '14.083'),
 ('30/08/2016 21:20:07',
  '0.660',
  '30/08/2016 21:20:13',
  '4.085',
  '30/08/2016 21:20:16',
  '0.698',
  '30/08/2016 21:20:18',
  'True',
  '13.399'),
 ('30/08/2016 21:25:07',
  '0.655',
  '30/08/2016 21:25:14',
  '4.397',
  '30/08/2016 21:25:17',
  '0.682',
  '30/08/2016 21:25:18',
  'True',
  '13.642'),
 ('30/08/2016 21:30:06',
  '0.644',
  '30/08/2016 21:30:12',
  '3.667',
  '30/08/2016 21:30:16',
  '0.730',
  '30/08/2016 21:30:17',
  'True',
  '13.636'),
 ('30/08/2016 21:35:07',
  '0.655',
  '30/08/2016 21:35:13',
  '4.285',
  '30/08/2016 21:35:17',
  '0.692',
  '30/08/2016 21:35:18',
  'True',
  '13.855'),
 ('30/08/2016 21:40:06',
  '0.663',
  '30/08/2016 21:40:13',
  '4.100',
  '30/08/2016 21:40:17',
  '0.849',
  '30/08/2016 21:40:19',
  'True',
  '14.645'),
 ('30/08/2016 21:45:07',
  '0.657',
  '30/08/2016 21:45:12',
  '3.584',
  '30/08/2016 21:45:17',
  '1.014',
  '30/08/2016 21:45:18',
  'True',
  '13.816'),
 ('30/08/2016 21:50:06',
  '0.649',
  '30/08/2016 21:50:12',
  '3.610',
  '30/08/2016 21:50:16',
  '1.340',
  '30/08/2016 21:50:17',
  'True',
  '13.533'),
 ('30/08/2016 21:55:07',
  '0.660',
  '30/08/2016 21:55:14',
  '4.948',
  '30/08/2016 21:55:18',
  '0.703',
  '30/08/2016 21:55:20',
  'True',
  '15.658'),
 ('30/08/2016 22:00:06',
  '0.656',
  '30/08/2016 22:00:14',
  '5.203',
  '30/08/2016 22:00:17',
  '0.716',
  '30/08/2016 22:00:19',
  'True',
  '14.983'),
 ('30/08/2016 22:05:07',
  '0.648',
  '30/08/2016 22:05:13',
  '3.516',
  '30/08/2016 22:05:16',
  '0.686',
  '30/08/2016 22:05:18',
  'True',
  '12.621'),
 ('30/08/2016 22:10:07',
  '0.646',
  '30/08/2016 22:10:14',
  '4.911',
  '30/08/2016 22:10:17',
  '0.759',
  '30/08/2016 22:10:19',
  'True',
  '14.370'),
 ('30/08/2016 22:15:06',
  '0.671',
  '30/08/2016 22:15:12',
  '3.583',
  '30/08/2016 22:15:15',
  '0.702',
  '30/08/2016 22:15:18',
  'True',
  '13.658'),
 ('30/08/2016 22:20:07',
  '0.657',
  '30/08/2016 22:20:16',
  '5.274',
  '30/08/2016 22:20:19',
  '0.734',
  '30/08/2016 22:20:20',
  'True',
  '15.590'),
 ('30/08/2016 22:25:06',
  '0.649',
  '30/08/2016 22:25:14',
  '5.598',
  '30/08/2016 22:25:18',
  '0.993',
  '30/08/2016 22:25:20',
  'True',
  '15.552'),
 ('30/08/2016 22:30:07',
  '0.651',
  '30/08/2016 22:30:13',
  '4.414',
  '30/08/2016 22:30:18',
  '0.816',
  '30/08/2016 22:30:19',
  'True',
  '14.963'),
 ('30/08/2016 22:35:07',
  '0.652',
  '30/08/2016 22:35:15',
  '5.521',
  '30/08/2016 22:35:20',
  '0.737',
  '30/08/2016 22:35:21',
  'True',
  '17.000'),
 ('30/08/2016 22:40:06',
  '0.660',
  '30/08/2016 22:40:13',
  '4.185',
  '30/08/2016 22:40:16',
  '0.701',
  '30/08/2016 22:40:17',
  'True',
  '13.165'),
 ('30/08/2016 22:45:06',
  '0.662',
  '30/08/2016 22:45:13',
  '5.047',
  '30/08/2016 22:45:17',
  '0.956',
  '30/08/2016 22:45:19',
  'True',
  '15.252'),
 ('30/08/2016 22:50:06',
  '0.659',
  '30/08/2016 22:50:12',
  '3.723',
  '30/08/2016 22:50:16',
  '0.864',
  '30/08/2016 22:50:17',
  'True',
  '13.888'),
 ('30/08/2016 22:55:07',
  '0.655',
  '30/08/2016 22:55:15',
  '5.617',
  '30/08/2016 22:55:18',
  '0.694',
  '30/08/2016 22:55:19',
  'True',
  '14.612'),
 ('30/08/2016 23:00:06',
  '0.644',
  '30/08/2016 23:00:13',
  '4.512',
  '30/08/2016 23:00:16',
  '0.686',
  '30/08/2016 23:00:17',
  'True',
  '13.638'),
 ('30/08/2016 23:05:07',
  '0.658',
  '30/08/2016 23:05:13',
  '4.450',
  '30/08/2016 23:05:16',
  '0.690',
  '30/08/2016 23:05:19',
  'True',
  '14.949'),
 ('30/08/2016 23:10:06',
  '0.651',
  '30/08/2016 23:10:14',
  '5.993',
  '30/08/2016 23:10:19',
  '1.199',
  '30/08/2016 23:10:21',
  'True',
  '16.867'),
 ('30/08/2016 23:15:07',
  '0.641',
  '30/08/2016 23:15:12',
  '3.534',
  '30/08/2016 23:15:15',
  '0.689',
  '30/08/2016 23:15:17',
  'True',
  '12.289'),
 ('30/08/2016 23:20:07',
  '0.652',
  '30/08/2016 23:20:14',
  '4.773',
  '30/08/2016 23:20:17',
  '0.722',
  '30/08/2016 23:20:19',
  'True',
  '14.214'),
 ('30/08/2016 23:25:06',
  '0.654',
  '30/08/2016 23:25:12',
  '3.587',
  '30/08/2016 23:25:16',
  '0.992',
  '30/08/2016 23:25:18',
  'True',
  '13.927'),
 ('30/08/2016 23:30:06',
  '0.661',
  '30/08/2016 23:30:13',
  '3.829',
  '30/08/2016 23:30:16',
  '0.695',
  '30/08/2016 23:30:17',
  'True',
  '13.482'),
 ('30/08/2016 23:35:07',
  '0.658',
  '30/08/2016 23:35:13',
  '4.698',
  '30/08/2016 23:35:17',
  '0.784',
  '30/08/2016 23:35:19',
  'True',
  '14.445'),
 ('30/08/2016 23:40:06',
  '0.655',
  '30/08/2016 23:40:13',
  '4.869',
  '30/08/2016 23:40:16',
  '0.687',
  '30/08/2016 23:40:17',
  'True',
  '13.627'),
 ('30/08/2016 23:45:06',
  '0.654',
  '30/08/2016 23:45:12',
  '3.783',
  '30/08/2016 23:45:16',
  '0.916',
  '30/08/2016 23:45:17',
  'True',
  '13.036'),
 ('30/08/2016 23:50:07',
  '0.653',
  '30/08/2016 23:50:14',
  '5.208',
  '30/08/2016 23:50:19',
  '0.892',
  '30/08/2016 23:50:20',
  'True',
  '15.340'),
 ('30/08/2016 23:55:07',
  '0.640',
  '30/08/2016 23:55:13',
  '3.549',
  '30/08/2016 23:55:16',
  '0.845',
  '30/08/2016 23:55:18',
  'True',
  '13.669'),
 ('31/08/2016 00:00:06',
  '0.642',
  '31/08/2016 00:00:14',
  '4.487',
  '31/08/2016 00:00:18',
  '0.969',
  '31/08/2016 00:00:19',
  'True',
  '15.134'),
 ('31/08/2016 00:05:06',
  '0.654',
  '31/08/2016 00:05:12',
  '4.042',
  '31/08/2016 00:05:16',
  '0.692',
  '31/08/2016 00:05:17',
  'True',
  '12.928'),
 ('31/08/2016 00:10:07',
  '0.652',
  '31/08/2016 00:10:14',
  '4.209',
  '31/08/2016 00:10:17',
  '0.693',
  '31/08/2016 00:10:18',
  'True',
  '13.681'),
 ('31/08/2016 00:15:07',
  '0.654',
  '31/08/2016 00:15:13',
  '4.403',
  '31/08/2016 00:15:17',
  '0.868',
  '31/08/2016 00:15:19',
  'True',
  '14.634'),
 ('31/08/2016 00:20:06',
  '0.670',
  '31/08/2016 00:20:13',
  '4.095',
  '31/08/2016 00:20:16',
  '0.713',
  '31/08/2016 00:20:18',
  'True',
  '13.902'),
 ('31/08/2016 00:25:06',
  '0.651',
  '31/08/2016 00:25:13',
  '4.909',
  '31/08/2016 00:25:18',
  '1.540',
  '31/08/2016 00:25:19',
  'True',
  '15.468'),
 ('31/08/2016 00:30:07',
  '0.664',
  '31/08/2016 00:30:13',
  '4.817',
  '31/08/2016 00:30:17',
  '0.709',
  '31/08/2016 00:30:19',
  'True',
  '14.321'),
 ('31/08/2016 00:35:06',
  '0.651',
  '31/08/2016 00:35:13',
  '3.922',
  '31/08/2016 00:35:17',
  '0.682',
  '31/08/2016 00:35:19',
  'True',
  '14.767'),
 ('31/08/2016 00:40:06',
  '0.651',
  '31/08/2016 00:40:12',
  '4.143',
  '31/08/2016 00:40:15',
  '0.692',
  '31/08/2016 00:40:17',
  'True',
  '12.927'),
 ('31/08/2016 00:45:07',
  '0.658',
  '31/08/2016 00:45:14',
  '5.537',
  '31/08/2016 00:45:18',
  '0.703',
  '31/08/2016 00:45:19',
  'True',
  '14.682'),
 ('31/08/2016 00:50:06',
  '0.657',
  '31/08/2016 00:50:13',
  '3.939',
  '31/08/2016 00:50:16',
  '0.825',
  '31/08/2016 00:50:17',
  'True',
  '13.636'),
 ('31/08/2016 00:55:07',
  '0.650',
  '31/08/2016 00:55:14',
  '4.528',
  '31/08/2016 00:55:18',
  '1.364',
  '31/08/2016 00:55:20',
  'True',
  '15.686'),
 ('31/08/2016 01:00:06',
  '0.651',
  '31/08/2016 01:00:12',
  '3.574',
  '31/08/2016 01:00:15',
  '0.753',
  '31/08/2016 01:00:17',
  'True',
  '12.535'),
 ('31/08/2016 01:05:06',
  '0.654',
  '31/08/2016 01:05:14',
  '3.917',
  '31/08/2016 01:05:17',
  '0.699',
  '31/08/2016 01:05:18',
  'True',
  '13.608'),
 ('31/08/2016 01:10:06',
  '0.656',
  '31/08/2016 01:10:13',
  '4.688',
  '31/08/2016 01:10:16',
  '0.959',
  '31/08/2016 01:10:18',
  'True',
  '14.032'),
 ('31/08/2016 01:15:06',
  '0.648',
  '31/08/2016 01:15:14',
  '4.962',
  '31/08/2016 01:15:19',
  '1.368',
  '31/08/2016 01:15:20',
  'True',
  '15.871'),
 ('31/08/2016 01:20:06',
  '0.653',
  '31/08/2016 01:20:12',
  '3.699',
  '31/08/2016 01:20:16',
  '0.778',
  '31/08/2016 01:20:17',
  'True',
  '13.026'),
 ('31/08/2016 01:25:06',
  '0.662',
  '31/08/2016 01:25:12',
  '4.158',
  '31/08/2016 01:25:15',
  '0.708',
  '31/08/2016 01:25:17',
  'True',
  '13.234'),
 ('31/08/2016 01:30:07',
  '0.660',
  '31/08/2016 01:30:15',
  '5.253',
  '31/08/2016 01:30:19',
  '1.127',
  '31/08/2016 01:30:20',
  'True',
  '15.327'),
 ('31/08/2016 01:35:06',
  '0.652',
  '31/08/2016 01:35:12',
  '3.542',
  '31/08/2016 01:35:16',
  '1.323',
  '31/08/2016 01:35:17',
  'True',
  '12.661'),
 ('31/08/2016 01:40:06',
  '0.647',
  '31/08/2016 01:40:13',
  '4.300',
  '31/08/2016 01:40:16',
  '0.784',
  '31/08/2016 01:40:18',
  'True',
  '13.485'),
 ('31/08/2016 01:45:06',
  '0.657',
  '31/08/2016 01:45:12',
  '4.193',
  '31/08/2016 01:45:15',
  '0.686',
  '31/08/2016 01:45:16',
  'True',
  '12.730'),
 ('31/08/2016 01:50:06',
  '0.650',
  '31/08/2016 01:50:12',
  '3.649',
  '31/08/2016 01:50:15',
  '0.688',
  '31/08/2016 01:50:17',
  'True',
  '12.412'),
 ('31/08/2016 01:55:07',
  '0.657',
  '31/08/2016 01:55:13',
  '3.868',
  '31/08/2016 01:55:16',
  '0.696',
  '31/08/2016 01:55:17',
  'True',
  '12.784'),
 ('31/08/2016 02:00:07',
  '0.665',
  '31/08/2016 02:00:13',
  '4.059',
  '31/08/2016 02:00:17',
  '0.754',
  '31/08/2016 02:00:18',
  'True',
  '13.562'),
 ('31/08/2016 02:05:06',
  '0.652',
  '31/08/2016 02:05:13',
  '3.998',
  '31/08/2016 02:05:16',
  '0.823',
  '31/08/2016 02:05:18',
  'True',
  '13.363'),
 ('31/08/2016 02:10:06',
  '0.646',
  '31/08/2016 02:10:12',
  '3.721',
  '31/08/2016 02:10:16',
  '0.735',
  '31/08/2016 02:10:17',
  'True',
  '13.332'),
 ('31/08/2016 02:15:07',
  '0.663',
  '31/08/2016 02:15:13',
  '4.006',
  '31/08/2016 02:15:16',
  '0.695',
  '31/08/2016 02:15:18',
  'True',
  '13.159'),
 ('31/08/2016 02:20:07',
  '0.644',
  '31/08/2016 02:20:13',
  '3.905',
  '31/08/2016 02:20:16',
  '0.692',
  '31/08/2016 02:20:17',
  'True',
  '12.208'),
 ('31/08/2016 02:25:06',
  '0.654',
  '31/08/2016 02:25:14',
  '5.490',
  '31/08/2016 02:25:18',
  '0.950',
  '31/08/2016 02:25:19',
  'True',
  '15.186'),
 ('31/08/2016 02:30:06',
  '0.654',
  '31/08/2016 02:30:14',
  '5.455',
  '31/08/2016 02:30:17',
  '0.861',
  '31/08/2016 02:30:19',
  'True',
  '15.303'),
 ('31/08/2016 02:35:06',
  '0.650',
  '31/08/2016 02:35:12',
  '3.554',
  '31/08/2016 02:35:16',
  '0.861',
  '31/08/2016 02:35:17',
  'True',
  '13.344'),
 ('31/08/2016 02:40:07',
  '0.651',
  '31/08/2016 02:40:12',
  '3.634',
  '31/08/2016 02:40:16',
  '1.077',
  '31/08/2016 02:40:18',
  'True',
  '13.115'),
 ('31/08/2016 02:45:07',
  '0.651',
  '31/08/2016 02:45:12',
  '3.604',
  '31/08/2016 02:45:16',
  '1.212',
  '31/08/2016 02:45:18',
  'True',
  '13.093'),
 ('31/08/2016 02:50:06',
  '0.647',
  '31/08/2016 02:50:14',
  '5.099',
  '31/08/2016 02:50:17',
  '0.688',
  '31/08/2016 02:50:18',
  'True',
  '13.985'),
 ('31/08/2016 02:55:06',
  '0.653',
  '31/08/2016 02:55:14',
  '4.526',
  '31/08/2016 02:55:17',
  '1.004',
  '31/08/2016 02:55:19',
  'True',
  '14.645'),
 ('31/08/2016 03:00:06',
  '0.648',
  '31/08/2016 03:00:13',
  '4.087',
  '31/08/2016 03:00:17',
  '0.876',
  '31/08/2016 03:00:18',
  'True',
  '14.509'),
 ('31/08/2016 03:05:06',
  '0.668',
  '31/08/2016 03:05:12',
  '3.937',
  '31/08/2016 03:05:16',
  '0.677',
  '31/08/2016 03:05:17',
  'True',
  '13.311'),
 ('31/08/2016 03:10:06',
  '0.652',
  '31/08/2016 03:10:14',
  '5.469',
  '31/08/2016 03:10:19',
  '0.868',
  '31/08/2016 03:10:21',
  'True',
  '16.355'),
 ('31/08/2016 03:15:06',
  '0.639',
  '31/08/2016 03:15:13',
  '3.533',
  '31/08/2016 03:15:17',
  '0.749',
  '31/08/2016 03:15:19',
  'True',
  '14.171'),
 ('31/08/2016 03:20:07',
  '0.663',
  '31/08/2016 03:20:14',
  '5.676',
  '31/08/2016 03:20:18',
  '0.793',
  '31/08/2016 03:20:19',
  'True',
  '14.628'),
 ('31/08/2016 03:25:07',
  '0.651',
  '31/08/2016 03:25:13',
  '4.500',
  '31/08/2016 03:25:16',
  '0.733',
  '31/08/2016 03:25:18',
  'True',
  '13.103'),
 ('31/08/2016 03:30:07',
  '0.645',
  '31/08/2016 03:30:13',
  '4.031',
  '31/08/2016 03:30:16',
  '0.711',
  '31/08/2016 03:30:18',
  'True',
  '13.162'),
 ('31/08/2016 03:35:06',
  '0.653',
  '31/08/2016 03:35:13',
  '4.147',
  '31/08/2016 03:35:17',
  '0.896',
  '31/08/2016 03:35:18',
  'True',
  '14.025'),
 ('31/08/2016 03:40:06',
  '0.652',
  '31/08/2016 03:40:11',
  '3.726',
  '31/08/2016 03:40:15',
  '0.921',
  '31/08/2016 03:40:17',
  'True',
  '13.091'),
 ('31/08/2016 03:45:06',
  '0.667',
  '31/08/2016 03:45:12',
  '3.526',
  '31/08/2016 03:45:16',
  '1.098',
  '31/08/2016 03:45:17',
  'True',
  '13.303'),
 ('31/08/2016 03:50:06',
  '0.653',
  '31/08/2016 03:50:13',
  '4.531',
  '31/08/2016 03:50:17',
  '0.751',
  '31/08/2016 03:50:18',
  'True',
  '13.611'),
 ('31/08/2016 03:55:07',
  '0.651',
  '31/08/2016 03:55:14',
  '4.745',
  '31/08/2016 03:55:17',
  '0.775',
  '31/08/2016 03:55:18',
  'True',
  '13.949'),
 ('31/08/2016 04:00:06',
  '0.643',
  '31/08/2016 04:00:12',
  '3.995',
  '31/08/2016 04:00:17',
  '0.758',
  '31/08/2016 04:00:18',
  'True',
  '14.214'),
 ('31/08/2016 04:05:06',
  '0.660',
  '31/08/2016 04:05:13',
  '3.882',
  '31/08/2016 04:05:17',
  '0.719',
  '31/08/2016 04:05:18',
  'True',
  '14.226'),
 ('31/08/2016 04:10:06',
  '0.650',
  '31/08/2016 04:10:11',
  '3.613',
  '31/08/2016 04:10:15',
  '1.023',
  '31/08/2016 04:10:17',
  'True',
  '13.722'),
 ('31/08/2016 04:20:06',
  '0.657',
  '31/08/2016 04:20:14',
  '5.570',
  '31/08/2016 04:20:18',
  '0.689',
  '31/08/2016 04:20:19',
  'True',
  '15.186'),
 ('31/08/2016 04:25:06',
  '0.651',
  '31/08/2016 04:25:12',
  '3.642',
  '31/08/2016 04:25:17',
  '1.563',
  '31/08/2016 04:25:18',
  'True',
  '14.275'),
 ('31/08/2016 04:30:06',
  '0.649',
  '31/08/2016 04:30:12',
  '3.812',
  '31/08/2016 04:30:16',
  '0.895',
  '31/08/2016 04:30:18',
  'True',
  '13.923'),
 ('31/08/2016 04:35:06',
  '0.642',
  '31/08/2016 04:35:12',
  '3.875',
  '31/08/2016 04:35:15',
  '0.686',
  '31/08/2016 04:35:16',
  'True',
  '12.758'),
 ('31/08/2016 04:40:06',
  '0.649',
  '31/08/2016 04:40:12',
  '3.796',
  '31/08/2016 04:40:15',
  '0.744',
  '31/08/2016 04:40:16',
  'True',
  '12.593'),
 ('31/08/2016 04:45:06',
  '0.650',
  '31/08/2016 04:45:11',
  '3.513',
  '31/08/2016 04:45:15',
  '1.054',
  '31/08/2016 04:45:16',
  'True',
  '12.644'),
 ('31/08/2016 04:50:07',
  '0.662',
  '31/08/2016 04:50:12',
  '3.650',
  '31/08/2016 04:50:16',
  '0.996',
  '31/08/2016 04:50:17',
  'True',
  '12.876'),
 ('31/08/2016 04:55:07',
  '0.657',
  '31/08/2016 04:55:13',
  '4.225',
  '31/08/2016 04:55:17',
  '0.751',
  '31/08/2016 04:55:18',
  'True',
  '13.713'),
 ('31/08/2016 05:00:06',
  '0.649',
  '31/08/2016 05:00:12',
  '4.051',
  '31/08/2016 05:00:16',
  '0.690',
  '31/08/2016 05:00:17',
  'True',
  '13.272'),
 ('31/08/2016 05:05:06',
  '0.654',
  '31/08/2016 05:05:14',
  '4.884',
  '31/08/2016 05:05:18',
  '0.687',
  '31/08/2016 05:05:19',
  'True',
  '14.792'),
 ('31/08/2016 05:10:07',
  '0.657',
  '31/08/2016 05:10:13',
  '3.566',
  '31/08/2016 05:10:16',
  '0.684',
  '31/08/2016 05:10:17',
  'True',
  '12.463'),
 ('31/08/2016 05:15:06',
  '0.642',
  '31/08/2016 05:15:12',
  '3.548',
  '31/08/2016 05:15:15',
  '0.690',
  '31/08/2016 05:15:16',
  'True',
  '12.099'),
 ('31/08/2016 05:20:07',
  '0.654',
  '31/08/2016 05:20:12',
  '3.528',
  '31/08/2016 05:20:16',
  '0.686',
  '31/08/2016 05:20:17',
  'True',
  '12.139'),
 ('31/08/2016 05:25:06',
  '0.659',
  '31/08/2016 05:25:12',
  '3.543',
  '31/08/2016 05:25:16',
  '0.683',
  '31/08/2016 05:25:18',
  'True',
  '13.804'),
 ('31/08/2016 05:30:06',
  '0.647',
  '31/08/2016 05:30:14',
  '5.043',
  '31/08/2016 05:30:17',
  '0.693',
  '31/08/2016 05:30:19',
  'True',
  '14.237'),
 ('31/08/2016 05:35:06',
  '0.639',
  '31/08/2016 05:35:13',
  '4.032',
  '31/08/2016 05:35:16',
  '0.720',
  '31/08/2016 05:35:18',
  'True',
  '13.543'),
 ('31/08/2016 05:40:06',
  '0.653',
  '31/08/2016 05:40:12',
  '4.277',
  '31/08/2016 05:40:17',
  '0.690',
  '31/08/2016 05:40:18',
  'True',
  '14.465'),
 ('31/08/2016 05:45:06',
  '0.652',
  '31/08/2016 05:45:13',
  '4.998',
  '31/08/2016 05:45:17',
  '1.706',
  '31/08/2016 05:45:19',
  'True',
  '15.227'),
 ('31/08/2016 05:50:06',
  '0.659',
  '31/08/2016 05:50:13',
  '4.263',
  '31/08/2016 05:50:17',
  '1.278',
  '31/08/2016 05:50:19',
  'True',
  '14.861'),
 ('31/08/2016 05:55:07',
  '0.648',
  '31/08/2016 05:55:13',
  '4.377',
  '31/08/2016 05:55:18',
  '0.876',
  '31/08/2016 05:55:19',
  'True',
  '13.868'),
 ('31/08/2016 06:00:07',
  '0.648',
  '31/08/2016 06:00:13',
  '3.664',
  '31/08/2016 06:00:19',
  '1.001',
  '31/08/2016 06:00:20',
  'True',
  '14.480'),
 ('31/08/2016 06:05:06',
  '0.648',
  '31/08/2016 06:05:11',
  '3.603',
  '31/08/2016 06:05:15',
  '0.681',
  '31/08/2016 06:05:16',
  'True',
  '12.676'),
 ('31/08/2016 06:10:06',
  '0.635',
  '31/08/2016 06:10:13',
  '4.798',
  '31/08/2016 06:10:17',
  '0.701',
  '31/08/2016 06:10:18',
  'True',
  '14.014'),
 ('31/08/2016 06:15:06',
  '0.654',
  '31/08/2016 06:15:14',
  '4.364',
  '31/08/2016 06:15:17',
  '0.702',
  '31/08/2016 06:15:18',
  'True',
  '14.290'),
 ('31/08/2016 06:20:07',
  '0.656',
  '31/08/2016 06:20:13',
  '3.596',
  '31/08/2016 06:20:17',
  '1.089',
  '31/08/2016 06:20:19',
  'True',
  '14.150'),
 ('31/08/2016 06:25:07',
  '0.667',
  '31/08/2016 06:25:13',
  '3.612',
  '31/08/2016 06:25:17',
  '1.223',
  '31/08/2016 06:25:18',
  'True',
  '13.117'),
 ('31/08/2016 06:30:06',
  '0.648',
  '31/08/2016 06:30:12',
  '3.879',
  '31/08/2016 06:30:17',
  '0.881',
  '31/08/2016 06:30:18',
  'True',
  '13.966'),
 ('31/08/2016 06:35:06',
  '0.654',
  '31/08/2016 06:35:14',
  '5.130',
  '31/08/2016 06:35:18',
  '0.709',
  '31/08/2016 06:35:20',
  'True',
  '15.515'),
 ('31/08/2016 06:40:07',
  '0.652',
  '31/08/2016 06:40:15',
  '5.728',
  '31/08/2016 06:40:19',
  '1.373',
  '31/08/2016 06:40:20',
  'True',
  '15.557'),
 ('31/08/2016 06:45:06',
  '0.659',
  '31/08/2016 06:45:13',
  '4.743',
  '31/08/2016 06:45:17',
  '0.877',
  '31/08/2016 06:45:19',
  'True',
  '15.212'),
 ('31/08/2016 06:50:06',
  '0.659',
  '31/08/2016 06:50:12',
  '3.990',
  '31/08/2016 06:50:15',
  '0.736',
  '31/08/2016 06:50:17',
  'True',
  '12.711'),
 ('31/08/2016 06:55:07',
  '0.644',
  '31/08/2016 06:55:13',
  '4.580',
  '31/08/2016 06:55:17',
  '0.794',
  '31/08/2016 06:55:19',
  'True',
  '14.419'),
 ('31/08/2016 07:00:07',
  '0.652',
  '31/08/2016 07:00:13',
  '4.274',
  '31/08/2016 07:00:18',
  '0.676',
  '31/08/2016 07:00:19',
  'True',
  '14.361'),
 ('31/08/2016 07:05:06',
  '0.650',
  '31/08/2016 07:05:12',
  '3.808',
  '31/08/2016 07:05:16',
  '0.683',
  '31/08/2016 07:05:18',
  'True',
  '13.940'),
 ('31/08/2016 07:10:06',
  '0.649',
  '31/08/2016 07:10:13',
  '4.855',
  '31/08/2016 07:10:17',
  '0.684',
  '31/08/2016 07:10:19',
  'True',
  '14.818'),
 ('31/08/2016 07:15:06',
  '0.645',
  '31/08/2016 07:15:13',
  '4.519',
  '31/08/2016 07:15:18',
  '0.864',
  '31/08/2016 07:15:19',
  'True',
  '15.160'),
 ('31/08/2016 07:20:06',
  '0.640',
  '31/08/2016 07:20:13',
  '4.494',
  '31/08/2016 07:20:16',
  '0.696',
  '31/08/2016 07:20:17',
  'True',
  '13.730'),
 ('31/08/2016 07:25:06',
  '0.659',
  '31/08/2016 07:25:12',
  '4.130',
  '31/08/2016 07:25:17',
  '1.233',
  '31/08/2016 07:25:19',
  'True',
  '14.872'),
 ('31/08/2016 07:30:06',
  '0.652',
  '31/08/2016 07:30:12',
  '3.758',
  '31/08/2016 07:30:15',
  '0.853',
  '31/08/2016 07:30:17',
  'True',
  '13.074'),
 ('31/08/2016 07:35:06',
  '0.650',
  '31/08/2016 07:35:12',
  '3.637',
  '31/08/2016 07:35:16',
  '0.934',
  '31/08/2016 07:35:17',
  'True',
  '13.044'),
 ('31/08/2016 07:40:06',
  '0.657',
  '31/08/2016 07:40:12',
  '3.925',
  '31/08/2016 07:40:16',
  '0.695',
  '31/08/2016 07:40:17',
  'True',
  '13.065'),
 ('31/08/2016 07:45:06',
  '0.652',
  '31/08/2016 07:45:13',
  '5.107',
  '31/08/2016 07:45:16',
  '0.700',
  '31/08/2016 07:45:17',
  'True',
  '13.821'),
 ...]

In [64]:
import datetime as dt

rg_log2 = re.compile('\nDEBUG \[base\.py_wrapper\] - (?P<ts1>\d{1,2}/\d\d/\d\d\d\d \d\d:\d\d:\d\d): plot_tile_last_24h TOOK: (?P<took1>\d{1,3}\.\d\d\d) s\nDEBUG \[base\.py_wrapper\] - (?P<ts2>\d{1,2}/\d\d/\d\d\d\d \d\d:\d\d:\d\d): plot_tile_last_24h TOOK: (?P<took2>\d{1,3}\.\d\d\d) s\nDEBUG \[base\.py_wrapper\] - (?P<ts3>\d{1,2}/\d\d/\d\d\d\d \d\d:\d\d:\d\d): plot_tile_last_24h TOOK: (?P<took3>\d{1,3}\.\d\d\d) s\nDEBUG \[mule_rscgen\.py__rsc_generator\] - (?P<tstotal>\d{1,2}/\d\d/\d\d\d\d \d\d:\d\d:\d\d): \(MULE\) TILES generation ok\? (?P<ok>True|False). TOOK (?P<tooktotal>\d{1,3}\.\d\d\d) s')
rscgen = pd.DataFrame(rg_log2.findall(text), columns=sorted(rg_log2.groupindex, key=lambda x: rg_log2.groupindex[x]))
for c in rscgen:
    if c.startswith('took'):
        rscgen[c] = rscgen[c].astype(float)
    elif c.startswith('ts'):
        rscgen[c] = [pd.Timestamp(dt.datetime.strptime(x, '%d/%m/%Y %H:%M:%S')) for x in rscgen[c]]
    else:  # == ok
        rscgen[c] = rscgen[c].str.contains('True')
rscgen.set_index('tstotal', inplace=True)

In [134]:
def _get_pond(row, c_pond, df_pond, coef_same=.5):
    ponds = df_pond.loc[row.time]
    try:
        same = ponds.loc[row[c_pond]]
        v_pond = (coef_same * ponds.loc[row[c_pond]] + (1 - coef_same) * ponds).mean()
    except KeyError:
        v_pond = ponds.mean()
    return v_pond


data_s = cat.get_summary()

data_s['completo'] = data_s.t_ref > .95
data_s.loc[data_s.completo, 'kWh_c'] = data_s.loc[data_s.completo, 'kWh']

data_s['hay_datos'] = False
data_s.loc[data_s.t_ref > .1, 'hay_datos'] = True

data_s['wd'] = data_s.index.weekday
data_s['time'] = data_s.index.time
data_s['month'] = data_s.index.month
data_s['week'] = data_s.index.week


data_usual = data_s[data_s.completo][['kWh', 't_ref', 'n_jump', 'n_exec',  'p_max', 'p_mean', 'p_min', 
                                      'time', 'wd', 'week', 'month']]
medians_wd = data_usual.groupby(['time', 'wd']).median()
medians_week = data_usual.groupby(['time', 'week']).median()
medians_month = data_usual.groupby(['time', 'month']).median()

for idx, row in data_s[~data_s.completo].iterrows():
    try:
        if data_s.loc[idx - pd.Timedelta('1D')].completo:
            v_pond_yesterday = data_s.loc[idx - pd.Timedelta('1D')]
    except KeyError:
        v_pond_yesterday = None
    v_pond_wd = _get_pond(row, 'wd', medians_wd, coef_same=.7)
    v_pond_week = _get_pond(row, 'week', medians_week, coef_same=.7)
    v_pond_month = _get_pond(row, 'month', medians_month, coef_same=.7)
    v_pond = .4 * v_pond_wd + .45 * v_pond_wd + .15 * v_pond_month
    
    if v_pond_yesterday is not None:
        v_pond = .4 * v_pond + .6 * v_pond_yesterday.loc[v_pond.index]
    
    t_ref = data_s.loc[idx, 't_ref']
    if t_ref > 0:
        kWh = data_s.loc[idx, 'kWh']
        v_pond = v_pond * (1 - t_ref) + kWh
    
    data_s.loc[idx, 'kWh_c'] = v_pond.kWh
    data_s.loc[idx, 'p_max_c'] = v_pond.p_max
    data_s.loc[idx, 'p_min_c'] = v_pond.p_min
    

data_s[['kWh', 'kWh_c']].plot(figsize=(18, 10))
plt.show()

(data_s['kWh_c'] - data_s['kWh']).plot()    
data_s.head()


***TIMEIT get_summary TOOK: 0.180 s
Out[134]:
kWh t_ref n_jump n_exec p_max p_mean p_min completo kWh_c hay_datos wd time month week p_max_c p_min_c
ts
2016-08-12 10:00:00 0.071497 0.226328 2 0 348.0 317.0 296.0 False 0.378566 True 4 10:00:00 8 32 474.893787 211.522353
2016-08-12 11:00:00 0.461430 1.000060 0 0 3452.0 461.0 299.0 True 0.461430 True 4 11:00:00 8 32 NaN NaN
2016-08-12 12:00:00 0.326755 0.999834 0 0 373.0 327.0 289.0 True 0.326755 True 4 12:00:00 8 32 NaN NaN
2016-08-12 13:00:00 0.363093 0.999993 0 0 871.0 363.0 296.0 True 0.363093 True 4 13:00:00 8 32 NaN NaN
2016-08-12 14:00:00 0.501344 0.999975 0 0 3304.0 501.0 208.0 True 0.501344 True 4 14:00:00 8 32 NaN NaN

In [119]:
data_s[['kWh', 'kWh_c']].plot()
plt.show()

(data_s['kWh_c'] - data_s['kWh']).plot()


Out[119]:
<matplotlib.axes._subplots.AxesSubplot at 0x113755668>

In [111]:
usuales
data_s['month'] = data_s.index.month
data_s['week'] = data_s.index.week
data_s


Out[111]:
kWh t_ref n_jump n_exec p_max p_mean p_min completo kWh_c hay_datos wd time p_max_c p_min_c month
ts
2016-08-12 10:00:00 0.071497 0.226328 2 0 348.0 317.0 296.0 False 0.369755 True 4 10:00:00 484.030992 207.526130 8
2016-08-12 11:00:00 0.461430 1.000060 0 0 3452.0 461.0 299.0 True 0.461430 True 4 11:00:00 NaN NaN 8
2016-08-12 12:00:00 0.326755 0.999834 0 0 373.0 327.0 289.0 True 0.326755 True 4 12:00:00 NaN NaN 8
2016-08-12 13:00:00 0.363093 0.999993 0 0 871.0 363.0 296.0 True 0.363093 True 4 13:00:00 NaN NaN 8
2016-08-12 14:00:00 0.501344 0.999975 0 0 3304.0 501.0 208.0 True 0.501344 True 4 14:00:00 NaN NaN 8
2016-08-12 15:00:00 0.362595 1.000106 0 0 1475.0 363.0 248.0 True 0.362595 True 4 15:00:00 NaN NaN 8
2016-08-12 16:00:00 0.305348 1.000007 0 0 404.0 305.0 225.0 True 0.305348 True 4 16:00:00 NaN NaN 8
2016-08-12 17:00:00 0.368282 0.999868 0 0 900.0 368.0 304.0 True 0.368282 True 4 17:00:00 NaN NaN 8
2016-08-12 18:00:00 0.359484 1.000134 0 0 468.0 359.0 293.0 True 0.359484 True 4 18:00:00 NaN NaN 8
2016-08-12 19:00:00 0.357033 0.999837 0 0 908.0 357.0 294.0 True 0.357033 True 4 19:00:00 NaN NaN 8
2016-08-12 20:00:00 0.339244 1.000182 0 0 424.0 339.0 260.0 True 0.339244 True 4 20:00:00 NaN NaN 8
2016-08-12 21:00:00 0.319713 0.999861 0 0 2076.0 320.0 209.0 True 0.319713 True 4 21:00:00 NaN NaN 8
2016-08-12 22:00:00 0.223205 1.000062 0 0 247.0 223.0 200.0 True 0.223205 True 4 22:00:00 NaN NaN 8
2016-08-12 23:00:00 0.235032 1.000085 0 0 818.0 235.0 212.0 True 0.235032 True 4 23:00:00 NaN NaN 8
2016-08-13 00:00:00 0.273163 1.000049 0 0 814.0 273.0 201.0 True 0.273163 True 5 00:00:00 NaN NaN 8
2016-08-13 01:00:00 0.238602 0.999780 0 0 293.0 239.0 211.0 True 0.238602 True 5 01:00:00 NaN NaN 8
2016-08-13 02:00:00 0.232725 1.000175 0 0 786.0 233.0 203.0 True 0.232725 True 5 02:00:00 NaN NaN 8
2016-08-13 03:00:00 0.213644 0.999844 0 0 258.0 214.0 194.0 True 0.213644 True 5 03:00:00 NaN NaN 8
2016-08-13 04:00:00 0.213918 1.000024 0 0 816.0 214.0 196.0 True 0.213918 True 5 04:00:00 NaN NaN 8
2016-08-13 05:00:00 0.212647 1.000009 0 0 247.0 213.0 195.0 True 0.212647 True 5 05:00:00 NaN NaN 8
2016-08-13 06:00:00 0.214074 1.000019 0 0 809.0 214.0 196.0 True 0.214074 True 5 06:00:00 NaN NaN 8
2016-08-13 07:00:00 0.213130 0.999925 0 0 249.0 213.0 197.0 True 0.213130 True 5 07:00:00 NaN NaN 8
2016-08-13 08:00:00 0.370600 1.000230 0 0 3400.0 371.0 202.0 True 0.370600 True 5 08:00:00 NaN NaN 8
2016-08-13 09:00:00 0.272039 0.999762 0 0 413.0 272.0 232.0 True 0.272039 True 5 09:00:00 NaN NaN 8
2016-08-13 10:00:00 0.259136 1.000219 0 0 320.0 259.0 216.0 True 0.259136 True 5 10:00:00 NaN NaN 8
2016-08-13 11:00:00 0.294824 0.999963 0 0 922.0 295.0 231.0 True 0.294824 True 5 11:00:00 NaN NaN 8
2016-08-13 12:00:00 0.276144 1.000026 0 0 320.0 276.0 237.0 True 0.276144 True 5 12:00:00 NaN NaN 8
2016-08-13 13:00:00 0.289751 1.000010 0 0 858.0 290.0 245.0 True 0.289751 True 5 13:00:00 NaN NaN 8
2016-08-13 14:00:00 0.266304 0.999753 0 0 302.0 266.0 240.0 True 0.266304 True 5 14:00:00 NaN NaN 8
2016-08-13 15:00:00 0.359113 1.000039 0 0 869.0 359.0 247.0 True 0.359113 True 5 15:00:00 NaN NaN 8
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2016-09-01 10:00:00 0.216010 1.000078 0 0 823.0 216.0 192.0 True 0.216010 True 3 10:00:00 NaN NaN 9
2016-09-01 11:00:00 0.205991 1.000014 0 0 231.0 206.0 190.0 True 0.205991 True 3 11:00:00 NaN NaN 9
2016-09-01 12:00:00 0.216427 1.000070 0 0 816.0 216.0 186.0 True 0.216427 True 3 12:00:00 NaN NaN 9
2016-09-01 13:00:00 0.205585 1.000004 0 0 228.0 206.0 191.0 True 0.205585 True 3 13:00:00 NaN NaN 9
2016-09-01 14:00:00 0.217650 1.000004 0 0 819.0 218.0 192.0 True 0.217650 True 3 14:00:00 NaN NaN 9
2016-09-01 15:00:00 0.207257 0.999988 0 0 236.0 207.0 192.0 True 0.207257 True 3 15:00:00 NaN NaN 9
2016-09-01 16:00:00 0.817654 0.999846 0 0 3184.0 818.0 192.0 True 0.817654 True 3 16:00:00 NaN NaN 9
2016-09-01 17:00:00 0.340359 0.999970 0 0 382.0 340.0 236.0 True 0.340359 True 3 17:00:00 NaN NaN 9
2016-09-01 18:00:00 0.302938 0.999998 0 0 393.0 303.0 199.0 True 0.302938 True 3 18:00:00 NaN NaN 9
2016-09-01 19:00:00 0.219488 0.999996 0 0 851.0 219.0 191.0 True 0.219488 True 3 19:00:00 NaN NaN 9
2016-09-01 20:00:00 0.288452 1.000107 0 0 508.0 288.0 199.0 True 0.288452 True 3 20:00:00 NaN NaN 9
2016-09-01 21:00:00 0.441770 1.000117 0 0 506.0 442.0 393.0 True 0.441770 True 3 21:00:00 NaN NaN 9
2016-09-01 22:00:00 0.346521 1.000028 0 0 928.0 347.0 239.0 True 0.346521 True 3 22:00:00 NaN NaN 9
2016-09-01 23:00:00 0.338695 0.999855 0 0 498.0 339.0 275.0 True 0.338695 True 3 23:00:00 NaN NaN 9
2016-09-02 00:00:00 0.318219 1.000045 0 0 863.0 318.0 259.0 True 0.318219 True 4 00:00:00 NaN NaN 9
2016-09-02 01:00:00 0.301778 0.999936 0 0 366.0 302.0 213.0 True 0.301778 True 4 01:00:00 NaN NaN 9
2016-09-02 02:00:00 0.237117 0.999950 0 0 796.0 237.0 204.0 True 0.237117 True 4 02:00:00 NaN NaN 9
2016-09-02 03:00:00 0.211544 0.999984 0 0 262.0 212.0 195.0 True 0.211544 True 4 03:00:00 NaN NaN 9
2016-09-02 04:00:00 0.211241 1.000018 0 0 792.0 211.0 193.0 True 0.211241 True 4 04:00:00 NaN NaN 9
2016-09-02 05:00:00 0.201899 1.000072 0 0 246.0 202.0 189.0 True 0.201899 True 4 05:00:00 NaN NaN 9
2016-09-02 06:00:00 0.210905 1.000000 0 0 788.0 211.0 189.0 True 0.210905 True 4 06:00:00 NaN NaN 9
2016-09-02 07:00:00 0.202320 0.999958 0 0 809.0 202.0 187.0 True 0.202320 True 4 07:00:00 NaN NaN 9
2016-09-02 08:00:00 0.319762 1.000071 0 0 2688.0 320.0 168.0 True 0.319762 True 4 08:00:00 NaN NaN 9
2016-09-02 09:00:00 0.305116 0.999905 0 0 828.0 305.0 171.0 True 0.305116 True 4 09:00:00 NaN NaN 9
2016-09-02 10:00:00 0.441348 1.000181 0 0 516.0 441.0 361.0 True 0.441348 True 4 10:00:00 NaN NaN 9
2016-09-02 11:00:00 0.056657 0.150569 0 0 464.0 376.0 331.0 False 0.395047 True 4 11:00:00 1478.915497 230.495070 9
2016-09-02 12:00:00 0.000000 NaN 0 0 NaN NaN NaN False 0.395346 False 4 12:00:00 1051.571429 271.642857 9
2016-09-02 13:00:00 0.496293 0.906546 3 3 1669.0 567.0 320.0 False 0.530522 True 4 13:00:00 86.861088 25.892403 9
2016-09-02 14:00:00 0.543383 1.000144 1 1 1734.0 546.0 312.0 True 0.543383 True 4 14:00:00 NaN NaN 9
2016-09-02 15:00:00 0.015472 0.039793 0 0 413.0 389.0 356.0 False 0.371952 False 4 15:00:00 1249.244687 217.673807 9

510 rows × 15 columns


In [110]:
data_s.index.weekofyear


Out[110]:
array([32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
       32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
       32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
       32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33,
       33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33,
       33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33,
       33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33,
       33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33,
       33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33,
       33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33,
       33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33,
       33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33,
       33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33,
       33, 33, 33, 33, 33, 33, 33, 33, 33, 34, 34, 34, 34, 34, 34, 34, 34,
       34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
       34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
       34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
       34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
       34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
       34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
       34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
       34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
       34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,
       34, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
       35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
       35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
       35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
       35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
       35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
       35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35], dtype=int32)

In [151]:



Out[151]:
0

In [ ]: