In [1]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from tornado import gen
from tornado.ioloop import IOLoop
from aimetrics import metrics
%matplotlib inline
In [2]:
with open("data/report_01.json") as f:
data_json = f.read()
In [4]:
import json
metric_data = json.loads(data_json)
In [11]:
drone_roc = []
for m in metric_data:
drone_roc.append(m['roc']['small drone'])
In [25]:
plt.figure(figsize=(12,12))
for r in drone_roc:
plt.plot(r["fpr"], r["tpr"])
plt.plot([0, 1], [0,1], 'k--')
plt.xlim([-0.05, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('BNN Drone Cross-val ROC Curves')
Out[25]:
In [14]:
person_roc = []
for m in metric_data:
person_roc.append(m['roc']['person'])
In [ ]:
person_roc
In [24]:
plt.figure(figsize=(12,12))
for r in person_roc:
plt.plot(r["fpr"], r["tpr"])
plt.plot([0, 1], [0,1], 'k--')
plt.xlim([-0.05, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('BNN Person Cross-val ROC Curves')
Out[24]:
In [30]:
accuracies = []
for m in metric_data:
accuracies.append(m['acc'])
accuracies = pd.Series(accuracies)
accuracies.describe()
Out[30]:
In [ ]: