Iter 1280, Minibatch Loss= 1.755664, Training Accuracy= 0.42969
Iter 2560, Minibatch Loss= 1.212868, Training Accuracy= 0.62500
Iter 3840, Minibatch Loss= 0.904883, Training Accuracy= 0.68750
Iter 5120, Minibatch Loss= 0.811659, Training Accuracy= 0.73438
Iter 6400, Minibatch Loss= 0.635554, Training Accuracy= 0.78125
Iter 7680, Minibatch Loss= 0.610600, Training Accuracy= 0.81250
Iter 8960, Minibatch Loss= 0.628577, Training Accuracy= 0.82812
Iter 10240, Minibatch Loss= 0.525954, Training Accuracy= 0.83594
Iter 11520, Minibatch Loss= 0.320729, Training Accuracy= 0.89844
Iter 12800, Minibatch Loss= 0.457968, Training Accuracy= 0.83594
Iter 14080, Minibatch Loss= 0.287802, Training Accuracy= 0.89062
Iter 15360, Minibatch Loss= 0.270891, Training Accuracy= 0.93750
Iter 16640, Minibatch Loss= 0.316820, Training Accuracy= 0.89844
Iter 17920, Minibatch Loss= 0.298229, Training Accuracy= 0.90625
Iter 19200, Minibatch Loss= 0.327001, Training Accuracy= 0.85938
Iter 20480, Minibatch Loss= 0.300310, Training Accuracy= 0.92188
Iter 21760, Minibatch Loss= 0.288746, Training Accuracy= 0.91406
Iter 23040, Minibatch Loss= 0.251030, Training Accuracy= 0.94531
Iter 24320, Minibatch Loss= 0.188075, Training Accuracy= 0.92969
Iter 25600, Minibatch Loss= 0.212189, Training Accuracy= 0.92969
Iter 26880, Minibatch Loss= 0.191988, Training Accuracy= 0.91406
Iter 28160, Minibatch Loss= 0.174374, Training Accuracy= 0.93750
Iter 29440, Minibatch Loss= 0.231610, Training Accuracy= 0.91406
Iter 30720, Minibatch Loss= 0.216877, Training Accuracy= 0.92188
Iter 32000, Minibatch Loss= 0.191306, Training Accuracy= 0.92969
Iter 33280, Minibatch Loss= 0.219689, Training Accuracy= 0.92969
Iter 34560, Minibatch Loss= 0.173724, Training Accuracy= 0.94531
Iter 35840, Minibatch Loss= 0.102239, Training Accuracy= 0.96875
Iter 37120, Minibatch Loss= 0.109119, Training Accuracy= 0.96094
Iter 38400, Minibatch Loss= 0.109292, Training Accuracy= 0.98438
Iter 39680, Minibatch Loss= 0.306919, Training Accuracy= 0.90625
Iter 40960, Minibatch Loss= 0.203778, Training Accuracy= 0.92188
Iter 42240, Minibatch Loss= 0.284107, Training Accuracy= 0.89844
Iter 43520, Minibatch Loss= 0.138126, Training Accuracy= 0.97656
Iter 44800, Minibatch Loss= 0.114046, Training Accuracy= 0.96094
Iter 46080, Minibatch Loss= 0.071983, Training Accuracy= 0.98438
Iter 47360, Minibatch Loss= 0.103043, Training Accuracy= 0.96094
Iter 48640, Minibatch Loss= 0.144249, Training Accuracy= 0.95312
Iter 49920, Minibatch Loss= 0.139357, Training Accuracy= 0.95312
Iter 51200, Minibatch Loss= 0.133279, Training Accuracy= 0.96875
Iter 52480, Minibatch Loss= 0.121659, Training Accuracy= 0.95312
Iter 53760, Minibatch Loss= 0.134236, Training Accuracy= 0.94531
Iter 55040, Minibatch Loss= 0.114976, Training Accuracy= 0.94531
Iter 56320, Minibatch Loss= 0.079626, Training Accuracy= 0.96875
Iter 57600, Minibatch Loss= 0.100246, Training Accuracy= 0.96875
Iter 58880, Minibatch Loss= 0.122625, Training Accuracy= 0.96094
Iter 60160, Minibatch Loss= 0.118390, Training Accuracy= 0.96094
Iter 61440, Minibatch Loss= 0.185835, Training Accuracy= 0.94531
Iter 62720, Minibatch Loss= 0.106119, Training Accuracy= 0.95312
Iter 64000, Minibatch Loss= 0.115121, Training Accuracy= 0.97656
Iter 65280, Minibatch Loss= 0.115135, Training Accuracy= 0.95312
Iter 66560, Minibatch Loss= 0.117334, Training Accuracy= 0.97656
Iter 67840, Minibatch Loss= 0.126765, Training Accuracy= 0.97656
Iter 69120, Minibatch Loss= 0.138394, Training Accuracy= 0.95312
Iter 70400, Minibatch Loss= 0.071930, Training Accuracy= 0.98438
Iter 71680, Minibatch Loss= 0.078006, Training Accuracy= 0.96094
Iter 72960, Minibatch Loss= 0.122468, Training Accuracy= 0.95312
Iter 74240, Minibatch Loss= 0.109707, Training Accuracy= 0.96094
Iter 75520, Minibatch Loss= 0.074332, Training Accuracy= 0.97656
Iter 76800, Minibatch Loss= 0.100400, Training Accuracy= 0.97656
Iter 78080, Minibatch Loss= 0.076505, Training Accuracy= 0.98438
Iter 79360, Minibatch Loss= 0.146538, Training Accuracy= 0.96094
Iter 80640, Minibatch Loss= 0.142548, Training Accuracy= 0.96094
Iter 81920, Minibatch Loss= 0.033582, Training Accuracy= 0.99219
Iter 83200, Minibatch Loss= 0.075734, Training Accuracy= 0.96094
Iter 84480, Minibatch Loss= 0.100758, Training Accuracy= 0.96094
Iter 85760, Minibatch Loss= 0.054176, Training Accuracy= 0.98438
Iter 87040, Minibatch Loss= 0.082799, Training Accuracy= 0.97656
Iter 88320, Minibatch Loss= 0.115938, Training Accuracy= 0.98438
Iter 89600, Minibatch Loss= 0.101315, Training Accuracy= 0.97656
Iter 90880, Minibatch Loss= 0.077859, Training Accuracy= 0.96875
Iter 92160, Minibatch Loss= 0.079088, Training Accuracy= 0.97656
Iter 93440, Minibatch Loss= 0.082847, Training Accuracy= 0.97656
Iter 94720, Minibatch Loss= 0.075818, Training Accuracy= 0.96875
Iter 96000, Minibatch Loss= 0.052176, Training Accuracy= 0.98438
Iter 97280, Minibatch Loss= 0.071600, Training Accuracy= 0.96875
Iter 98560, Minibatch Loss= 0.078695, Training Accuracy= 0.96875
Iter 99840, Minibatch Loss= 0.095374, Training Accuracy= 0.98438
Optimization Finished!
('Testing Accuracy:', 0.984375)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-26-d1a26b3e8377> in <module>()
24 test_label = validation_labels
25 print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
---> 26 saver.save(sess, 'model', global_step=i+1)
NameError: name 'i' is not defined