In [1]:
import pandas as pd
import matplotlib.pyplot as plt
from mlxtend.plotting import plot_decision_regions
from sklearn.svm import SVC

%matplotlib inline

In [2]:
dataset = pd.DataFrame([[1,1,0], [1,0,1], [0,1,1], [0,0,0]], columns=['feature1', 'feature1', 'target'])

In [3]:
dataset


Out[3]:
feature1 feature1 target
0 1 1 0
1 1 0 1
2 0 1 1
3 0 0 0

In [4]:
X = dataset.values[:,:2]
Y = dataset['target'].values

In [5]:
model = SVC(kernel='rbf').fit(X,Y)
model


Out[5]:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

In [6]:
score = model.score(X,Y)
print('Score com dados de teste: ', score)


Score com dados de teste:  1.0

In [7]:
model.predict([[0,0]])


Out[7]:
array([0])

In [9]:
plot_decision_regions(X, Y, clf=model)
plt.xlabel('features')
plt.ylabel('target')
plt.title('XOR')
plt.show()