Created on Mon Dec 01 15:05:56 2016 @author: Richard

Required packages:
  • pySTATIS
  • numpy
  • mapalign
  • nibabel
  • sklearn
  • cluster_roi
suggested file struture:
  • main/
  • main/cpac/filt_noglobal/rois_cc400/ > for data files
  • main/Affn/ > for adjacency matrices
  • main/Embs/ > for diffusion embedding files
download ABIDE data:

http://preprocessed-connectomes-project.org/abide/download.html

python download_abide_preproc.py -d rois_cc400 -p cpac -s filt_noglobal -o data/ -x 'M' -gt 18 -lt 55


In [1]:
## lets start with some actual script
# import useful things
import numpy as np
import os
import nibabel as nib
from sklearn.metrics import pairwise_distances

# get a list of inputs
from os import listdir
from os.path import isfile, join
import os.path

# little helper function to return the proper filelist with the full path
def listdir_nohidden(path):
    for f in os.listdir(path):
        if not f.startswith('.'):
            yield f

def listdir_fullpath(d):
    return [os.path.join(d, f) for f in listdir_nohidden(d)]
# and create a filelist
onlyfiles = listdir_fullpath("data/Outputs/cpac/filt_noglobal/rois_cc400")

Check all files to see if any have missing nodal information and create a selection list based on the ones that are 100% complete.


In [2]:
# check to see which files contains nodes with missing information
missingarray = []
for i in onlyfiles:
# load timeseries
    filename = i
    ts_raw = np.loadtxt(filename)

# check zero columns
    missingn = np.where(~ts_raw.any(axis=0))[0]
    missingarray.append(missingn)

# select the ones that don't have missing data
ids = np.where([len(i) == 0 for i in missingarray])[0]
selected = [onlyfiles[i] for i in ids]
# could be useful to have one without pathnames later one
selected2 = [os.path.basename(onlyfiles[i]) for i in ids]
print(len(selected))


178

run the diffusion embedding


In [72]:
# run the diffusion embedding
from mapalign import embed

for i in selected:
    # load timeseries
    #print i
    filename = i
    ts = np.loadtxt(filename)
    # create correlation matrix
    dcon = np.corrcoef(ts.T)
    dcon[np.isnan(dcon)] = 0

    # Get number of nodes
    N = dcon.shape[0]

    # threshold
    perc = np.array([np.percentile(x, 90) for x in dcon])

    for ii in range(dcon.shape[0]):
        #print "Row %d" % ii
        dcon[ii, dcon[ii,:] < perc[ii]] = 0

    # If there are any left then set them to zero
    dcon[dcon < 0] = 0

    # compute the pairwise correctionlation distances
    aff = 1 - pairwise_distances(dcon, metric = 'cosine')

    # start saving
    savename = os.path.basename(filename)
    np.save("./data/Outputs/Affn/"+savename+"_cosine_affinity.npy", aff)
    # get the diffusion maps
    emb, res = embed.compute_diffusion_map(aff, alpha = 0.5)
    # Save results
    np.save("./data/Outputs/Embs/"+savename+"_embedding_dense_emb.npy", emb)
    np.save("./data/Outputs/Embs/"+savename+"_embedding_dense_res.npy", res)

    X = res['vectors']
    X = (X.T/X[:,0]).T[:,1:]    
    
    np.save("./data/Outputs/Embs/"+savename+"_embedding_dense_res_veconly.npy", X) #store vectors only

Run Statis to back-project the grouped embeddings


In [5]:
%%capture
from pySTATIS import statis

#load vectors
names = list(xrange(392))
X = [np.load("./data/Outputs/Embs/"+ os.path.basename(filename)+"_embedding_dense_res_veconly.npy") for filename in selected2]
out = statis.statis(X, names, fname='statis_results.npy')
statis.project_back(X, out['Q'], path = "./data/Outputs/Regs/",fnames = selected2)
np.save("Mean_Vec.npy",out['F'])

In [ ]:
# saving everything in one dump
import pickle
with open('output.pickle' ,'w') as f:
    pickle.dump([selected, out],f)

plotting

plot to surface for inspection this cell in only necessary for plotting below


In [10]:
%matplotlib inline
import matplotlib.pylab as plt
import nilearn
import nilearn.plotting

import numpy as np
import nibabel as nib

def rebuild_nii(num):

    data = np.load('Mean_Vec.npy')
    a = data[:,num].copy()
    nim = nib.load('cc400_roi_atlas.nii')
    imdat=nim.get_data()
    imdat_new = imdat.copy()

    for n, i in enumerate(np.unique(imdat)):
        if i != 0:
            imdat_new[imdat == i] = a[n-1] * 10000 # scaling factor. Could also try to get float values in nifti...

    nim_out = nib.Nifti1Image(imdat_new, nim.get_affine(), nim.get_header())
    nim_out.set_data_dtype('float32')
    # to save:
    nim_out.to_filename('Gradient_'+ str(num) +'_res.nii')

    nilearn.plotting.plot_epi(nim_out)
    return(nim_out)

In [11]:
for i in range(10):
    nims = rebuild_nii(i)


/Library/anaconda/envs/rbbrainhack/lib/python2.7/site-packages/ipykernel/__main__.py:21: DeprecationWarning: get_affine method is deprecated.
Please use the ``img.affine`` property instead.

* deprecated from version: 2.1
* Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0
/Library/anaconda/envs/rbbrainhack/lib/python2.7/site-packages/ipykernel/__main__.py:21: DeprecationWarning: get_header method is deprecated.
Please use the ``img.header`` property instead.

* deprecated from version: 2.1
* Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0

Output everything to an excel file


In [6]:
import pandas as pd
# read in csv
df_phen = pd.read_csv('Phenotypic_V1_0b_preprocessed1.csv')
# add a column that matches the filename
for i in df_phen:
    df_phen['filename'] = join(df_phen['FILE_ID']+"_rois_cc400.1D")
    df_phen['filenamelpy'] = join(df_phen['FILE_ID']+"_rois_cc400.1D.npy")

df_phen['selec'] = np.where(df_phen['filename'].isin((selected2)), 1, 0)

Compare the slopes across subjects


In [73]:
from scipy import stats
grdnt_slope = []
for i in selected2:
    # load gradients
    # print i
    filename = i
    grdnt = np.load("./data/Outputs/Regs/" + filename + ".npy")
    # do we need a specific ordering of the nodes??
    y = list(xrange(392))
    temp = []
    for ii in range(10):
        x = sorted(grdnt[:,ii]) # just sort in ascending order?
        slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
        temp.append(slope)
        
    grdnt_slope.append(temp)
grdnt_slope = np.array(grdnt_slope)
# make it into a dataframe
data_grdnt = pd.DataFrame(grdnt_slope)
data_grdnt['file'] = selected2

And write them to an excel file


In [8]:
data = df_phen.loc[df_phen["selec"] == 1]
data['filenamelow'] = data['filename'].str.lower()
data = data.sort(['filenamelow'])

output = data.merge(data_grdnt, left_on='filename',right_on='file',how='outer')
output.to_csv('Combined.csv', sep='\t')


/anaconda/lib/python2.7/site-packages/ipykernel/__main__.py:2: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  from ipykernel import kernelapp as app
/anaconda/lib/python2.7/site-packages/ipykernel/__main__.py:3: FutureWarning: sort(columns=....) is deprecated, use sort_values(by=.....)
  app.launch_new_instance()

Plot some stuff


In [69]:
## numpy is used for creating fake data
%matplotlib inline
import numpy as np 
import matplotlib as mpl 

## agg backend is used to create plot as a .png file
mpl.use('agg')

import matplotlib.pyplot as plt 
df = pd.DataFrame(output, columns = ['DX_GROUP', 0,1,2,3,4,5,6,7,8,9])
ASC = df['DX_GROUP'] == 2
NT = df['DX_GROUP'] == 1
G1 = df[ASC]
G2 = df[NT]

# some plotting options
fs = 10  # fontsize
flierprops = dict(marker='o', markerfacecolor='green', markersize=12,
                  linestyle='none')

## combine the groups collections into a list    
Grd0 = [G1[0], G2[0]]
Grd1 = [G1[1], G2[1]]
Grd2 = [G1[2], G2[2]]
Grd3 = [G1[3], G2[3]]
Grd4 = [G1[4], G2[4]]
Grd5 = [G1[5], G2[5]]
Grd6 = [G1[6], G2[6]]
Grd7 = [G1[7], G2[7]]
Grd8 = [G1[8], G2[8]]
Grd9 = [G1[9], G2[9]]

fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(6, 6), sharey=True)

axes[0, 0].boxplot(Grd0, patch_artist=True)
axes[0, 0].set_title('G0', fontsize=fs)

axes[0, 1].boxplot(Grd1, patch_artist=True)
axes[0, 1].set_title('G1', fontsize=fs)

axes[0, 2].boxplot(Grd2, patch_artist=True)
axes[0, 2].set_title('G2', fontsize=fs)

axes[0, 3].boxplot(Grd3, patch_artist=True)
axes[0, 3].set_title('G3', fontsize=fs)

axes[0, 4].boxplot(Grd4, patch_artist=True)
axes[0, 4].set_title('G4', fontsize=fs)

axes[1, 0].boxplot(Grd5, patch_artist=True)
axes[1, 0].set_title('G5', fontsize=fs)

axes[1, 1].boxplot(Grd6, patch_artist=True)
axes[1, 1].set_title('G6', fontsize=fs)

axes[1, 2].boxplot(Grd7, patch_artist=True)
axes[1, 2].set_title('G7', fontsize=fs)

axes[1, 3].boxplot(Grd8, patch_artist=True)
axes[1, 3].set_title('G8', fontsize=fs)

axes[1, 4].boxplot(Grd9, patch_artist=True)
axes[1, 4].set_title('G9', fontsize=fs)

fig.suptitle("Gradient Slopes")
fig.subplots_adjust(hspace=0.4)


Permutations


In [79]:
def exact_mc_perm_test(xs, ys, nmc):
    n, k = len(xs), 0
    diff = np.abs(np.mean(xs) - np.mean(ys))
    zs = np.concatenate([xs, ys])
    for j in range(nmc):
        np.random.shuffle(zs)
        k += diff < np.abs(np.mean(zs[:n]) - np.mean(zs[n:]))
    return k / nmc

print(exact_mc_perm_test(G1[0],G2[0],1000))
print(exact_mc_perm_test(G1[1],G2[1],1000))


0
0

Some quality control


In [22]:
%matplotlib inline
# this cell in only necessary for plotting below
import matplotlib.pylab as plt 
import nilearn 
import nilearn.plotting 

import numpy as np
import nibabel as nib
from os import listdir
from os.path import isfile, join

def rebuild_nii(num):
    
    data = np.load('Mean_Vec.npy')
    a = data[:,num].copy()
    nim = nib.load('cc400_roi_atlas.nii')
    imdat=nim.get_data()
    imdat_new = imdat.copy()

    for n, i in enumerate(np.unique(imdat)):
        if i != 0:
            imdat_new[imdat == i] = a[n-1] * 100000 # scaling factor. Could also try to get float values in nifti...

    nim_out = nib.Nifti1Image(imdat_new, nim.get_affine(), nim.get_header())
    nim_out.set_data_dtype('float32')
    # to save:
    # nim_out.to_filename('res.nii')

    nilearn.plotting.plot_epi(nim_out)

def rebuild_nii_individ(num):
    
    onlyfiles = [f for f in listdir_nohidden('./data/Outputs/Regs/') if isfile(join('./data/Outputs/Regs/', f))]
    for index in range(178):
        
        sub = onlyfiles[index]
        print(sub)
        data = np.load('./data/Outputs/Regs/%s' % sub)
        a = data[:,num].astype('float32')
        nim = nib.load('cc400_roi_atlas.nii')
        imdat = nim.get_data().astype('float32')
        
        #print(np.unique(a))
        for i in np.unique(imdat):
            #a[a>0.1] = 0
            #a[a<-0.1] = 0
            if i != 0 and i < 392:
                imdat[imdat == i] = a[int(i)-1] # scaling factor. Could also try to get float values in nifti...
            elif i >= 392:
                imdat[imdat == i] = np.nan

        nim_out = nib.Nifti1Image(imdat, nim.get_affine(), nim.get_header())
        nim_out.set_data_dtype('float32')
        # to save:
        nim_out.to_filename(os.getcwd() + '/data/Outputs/individual/' + 'res' + sub + str(num) + '.nii')
        print(os.getcwd())
        # nilearn.plotting.plot_epi(nim_out)

Check all individual images


In [23]:
nims = rebuild_nii_individ(0)


Caltech_0051465_rois_cc400.1D.npy
/Library/anaconda/envs/rbbrainhack/lib/python2.7/site-packages/ipykernel/__main__.py:52: DeprecationWarning: get_affine method is deprecated.
Please use the ``img.affine`` property instead.

* deprecated from version: 2.1
* Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0
/Library/anaconda/envs/rbbrainhack/lib/python2.7/site-packages/ipykernel/__main__.py:52: DeprecationWarning: get_header method is deprecated.
Please use the ``img.header`` property instead.

* deprecated from version: 2.1
* Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0
/Users/jan/Dropbox/Documents/Projects/gradients
Caltech_0051474_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Caltech_0051476_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Caltech_0051477_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Caltech_0051488_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Caltech_0051492_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
CMU_a_0050649_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050682_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050683_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050685_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050686_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050688_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050689_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050690_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050691_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050692_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050694_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050695_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050696_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050697_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050698_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050699_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050700_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050703_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050704_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050705_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050706_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050707_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050708_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050709_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Leuven_1_0050710_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_a_0051318_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_a_0051319_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_a_0051362_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_a_0051363_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_a_0051365_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_a_0051369_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_a_0051373_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_a_0051607_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_b_0051323_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_b_0051324_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_b_0051326_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051328_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051333_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051334_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051335_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051336_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051338_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051339_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051340_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051342_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051343_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051344_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051345_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051346_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_c_0051347_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_d_0051330_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
MaxMun_d_0051331_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051015_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051016_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051019_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051021_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051023_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051024_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051025_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051026_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051027_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051028_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051029_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051066_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051067_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051068_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051112_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051113_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051114_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051116_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051117_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051130_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051131_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051146_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051147_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051148_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051149_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051150_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051151_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051152_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051153_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051154_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051155_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
NYU_0051156_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Olin_0050107_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Olin_0050115_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Olin_0050117_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Olin_0050121_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Olin_0050131_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Olin_0050136_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050004_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050009_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050010_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050012_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050020_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050025_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050030_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050037_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050040_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050042_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050046_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050058_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Pitt_0050060_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
SBL_0051557_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
SBL_0051559_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
SBL_0051561_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
SBL_0051563_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
SBL_0051574_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
SBL_0051585_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050232_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050233_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050237_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050245_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050253_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050254_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050260_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050261_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050262_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050263_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050264_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050270_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0050271_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0051132_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
Trinity_0051139_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
UM_1_0050320_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
UM_1_0050344_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
UM_1_0050346_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
UM_1_0050349_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
UM_2_0050382_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
UM_2_0050388_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050433_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050434_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050439_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050440_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050441_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050442_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050444_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050445_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050446_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050449_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050455_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050463_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050466_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050467_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050468_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050469_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050477_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050480_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050482_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050483_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050485_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050487_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050488_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050490_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050491_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050492_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050493_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050496_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050497_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050498_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050499_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050502_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050503_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050505_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050507_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050514_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050518_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050521_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050525_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050526_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050527_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients
USM_0050530_rois_cc400.1D.npy
/Users/jan/Dropbox/Documents/Projects/gradients

In [84]:
!fslview resCaltech_0051474_rois_cc400.1D.npy.nii