In [47]:
import pandas as pd
from matplotlib import pyplot as plt
from scipy.stats import spearmanr
from sklearn.feature_selection import VarianceThreshold

%matplotlib inline

In [2]:
!ls data


prosperLoanData.csv

In [3]:
df = pd.read_csv('data/prosperLoanData.csv')
print(df.shape)
df.head()


(113937, 81)
Out[3]:
ListingKey ListingNumber ListingCreationDate CreditGrade Term LoanStatus ClosedDate BorrowerAPR BorrowerRate LenderYield ... LP_ServiceFees LP_CollectionFees LP_GrossPrincipalLoss LP_NetPrincipalLoss LP_NonPrincipalRecoverypayments PercentFunded Recommendations InvestmentFromFriendsCount InvestmentFromFriendsAmount Investors
0 1021339766868145413AB3B 193129 2007-08-26 19:09:29.263000000 C 36 Completed 2009-08-14 00:00:00 0.16516 0.1580 0.1380 ... -133.18 0.0 0.0 0.0 0.0 1.0 0 0 0.0 258
1 10273602499503308B223C1 1209647 2014-02-27 08:28:07.900000000 NaN 36 Current NaN 0.12016 0.0920 0.0820 ... 0.00 0.0 0.0 0.0 0.0 1.0 0 0 0.0 1
2 0EE9337825851032864889A 81716 2007-01-05 15:00:47.090000000 HR 36 Completed 2009-12-17 00:00:00 0.28269 0.2750 0.2400 ... -24.20 0.0 0.0 0.0 0.0 1.0 0 0 0.0 41
3 0EF5356002482715299901A 658116 2012-10-22 11:02:35.010000000 NaN 36 Current NaN 0.12528 0.0974 0.0874 ... -108.01 0.0 0.0 0.0 0.0 1.0 0 0 0.0 158
4 0F023589499656230C5E3E2 909464 2013-09-14 18:38:39.097000000 NaN 36 Current NaN 0.24614 0.2085 0.1985 ... -60.27 0.0 0.0 0.0 0.0 1.0 0 0 0.0 20

5 rows × 81 columns


In [4]:
df.columns


Out[4]:
Index(['ListingKey', 'ListingNumber', 'ListingCreationDate', 'CreditGrade',
       'Term', 'LoanStatus', 'ClosedDate', 'BorrowerAPR', 'BorrowerRate',
       'LenderYield', 'EstimatedEffectiveYield', 'EstimatedLoss',
       'EstimatedReturn', 'ProsperRating (numeric)', 'ProsperRating (Alpha)',
       'ProsperScore', 'ListingCategory (numeric)', 'BorrowerState',
       'Occupation', 'EmploymentStatus', 'EmploymentStatusDuration',
       'IsBorrowerHomeowner', 'CurrentlyInGroup', 'GroupKey',
       'DateCreditPulled', 'CreditScoreRangeLower', 'CreditScoreRangeUpper',
       'FirstRecordedCreditLine', 'CurrentCreditLines', 'OpenCreditLines',
       'TotalCreditLinespast7years', 'OpenRevolvingAccounts',
       'OpenRevolvingMonthlyPayment', 'InquiriesLast6Months', 'TotalInquiries',
       'CurrentDelinquencies', 'AmountDelinquent', 'DelinquenciesLast7Years',
       'PublicRecordsLast10Years', 'PublicRecordsLast12Months',
       'RevolvingCreditBalance', 'BankcardUtilization',
       'AvailableBankcardCredit', 'TotalTrades',
       'TradesNeverDelinquent (percentage)', 'TradesOpenedLast6Months',
       'DebtToIncomeRatio', 'IncomeRange', 'IncomeVerifiable',
       'StatedMonthlyIncome', 'LoanKey', 'TotalProsperLoans',
       'TotalProsperPaymentsBilled', 'OnTimeProsperPayments',
       'ProsperPaymentsLessThanOneMonthLate',
       'ProsperPaymentsOneMonthPlusLate', 'ProsperPrincipalBorrowed',
       'ProsperPrincipalOutstanding', 'ScorexChangeAtTimeOfListing',
       'LoanCurrentDaysDelinquent', 'LoanFirstDefaultedCycleNumber',
       'LoanMonthsSinceOrigination', 'LoanNumber', 'LoanOriginalAmount',
       'LoanOriginationDate', 'LoanOriginationQuarter', 'MemberKey',
       'MonthlyLoanPayment', 'LP_CustomerPayments',
       'LP_CustomerPrincipalPayments', 'LP_InterestandFees', 'LP_ServiceFees',
       'LP_CollectionFees', 'LP_GrossPrincipalLoss', 'LP_NetPrincipalLoss',
       'LP_NonPrincipalRecoverypayments', 'PercentFunded', 'Recommendations',
       'InvestmentFromFriendsCount', 'InvestmentFromFriendsAmount',
       'Investors'],
      dtype='object')

In [14]:
df.dtypes


Out[14]:
ListingKey                              object
ListingNumber                            int64
ListingCreationDate                     object
CreditGrade                             object
Term                                     int64
LoanStatus                              object
ClosedDate                              object
BorrowerAPR                            float64
BorrowerRate                           float64
LenderYield                            float64
EstimatedEffectiveYield                float64
EstimatedLoss                          float64
EstimatedReturn                        float64
ProsperRating (numeric)                float64
ProsperRating (Alpha)                   object
ProsperScore                           float64
ListingCategory (numeric)                int64
BorrowerState                           object
Occupation                              object
EmploymentStatus                        object
EmploymentStatusDuration               float64
IsBorrowerHomeowner                       bool
CurrentlyInGroup                          bool
GroupKey                                object
DateCreditPulled                        object
CreditScoreRangeLower                  float64
CreditScoreRangeUpper                  float64
FirstRecordedCreditLine                 object
CurrentCreditLines                     float64
OpenCreditLines                        float64
                                        ...   
TotalProsperLoans                      float64
TotalProsperPaymentsBilled             float64
OnTimeProsperPayments                  float64
ProsperPaymentsLessThanOneMonthLate    float64
ProsperPaymentsOneMonthPlusLate        float64
ProsperPrincipalBorrowed               float64
ProsperPrincipalOutstanding            float64
ScorexChangeAtTimeOfListing            float64
LoanCurrentDaysDelinquent                int64
LoanFirstDefaultedCycleNumber          float64
LoanMonthsSinceOrigination               int64
LoanNumber                               int64
LoanOriginalAmount                       int64
LoanOriginationDate                     object
LoanOriginationQuarter                  object
MemberKey                               object
MonthlyLoanPayment                     float64
LP_CustomerPayments                    float64
LP_CustomerPrincipalPayments           float64
LP_InterestandFees                     float64
LP_ServiceFees                         float64
LP_CollectionFees                      float64
LP_GrossPrincipalLoss                  float64
LP_NetPrincipalLoss                    float64
LP_NonPrincipalRecoverypayments        float64
PercentFunded                          float64
Recommendations                          int64
InvestmentFromFriendsCount               int64
InvestmentFromFriendsAmount            float64
Investors                                int64
Length: 81, dtype: object


In [31]:
for col in df[:5]:
    print(df[col].describe())
    print()


count                      113937
unique                     113066
top       17A93590655669644DB4C06
freq                            6
Name: ListingKey, dtype: object

count    1.139370e+05
mean     6.278857e+05
std      3.280762e+05
min      4.000000e+00
25%      4.009190e+05
50%      6.005540e+05
75%      8.926340e+05
max      1.255725e+06
Name: ListingNumber, dtype: float64

count                            113937
unique                           113064
top       2013-10-02 17:20:16.550000000
freq                                  6
Name: ListingCreationDate, dtype: object

count     28953
unique        8
top           C
freq       5649
Name: CreditGrade, dtype: object

count    113937.000000
mean         40.830248
std          10.436212
min          12.000000
25%          36.000000
50%          36.000000
75%          36.000000
max          60.000000
Name: Term, dtype: float64

count      113937
unique         12
top       Current
freq        56576
Name: LoanStatus, dtype: object

count                   55089
unique                   2802
top       2014-03-04 00:00:00
freq                      105
Name: ClosedDate, dtype: object

count    113912.000000
mean          0.218828
std           0.080364
min           0.006530
25%           0.156290
50%           0.209760
75%           0.283810
max           0.512290
Name: BorrowerAPR, dtype: float64

count    113937.000000
mean          0.192764
std           0.074818
min           0.000000
25%           0.134000
50%           0.184000
75%           0.250000
max           0.497500
Name: BorrowerRate, dtype: float64

count    113937.000000
mean          0.182701
std           0.074516
min          -0.010000
25%           0.124200
50%           0.173000
75%           0.240000
max           0.492500
Name: LenderYield, dtype: float64

count    84853.000000
mean         0.168661
std          0.068467
min         -0.182700
25%          0.115670
50%          0.161500
75%          0.224300
max          0.319900
Name: EstimatedEffectiveYield, dtype: float64

count    84853.000000
mean         0.080306
std          0.046764
min          0.004900
25%          0.042400
50%          0.072400
75%          0.112000
max          0.366000
Name: EstimatedLoss, dtype: float64

count    84853.000000
mean         0.096068
std          0.030403
min         -0.182700
25%          0.074080
50%          0.091700
75%          0.116600
max          0.283700
Name: EstimatedReturn, dtype: float64

count    84853.000000
mean         4.072243
std          1.673227
min          1.000000
25%          3.000000
50%          4.000000
75%          5.000000
max          7.000000
Name: ProsperRating (numeric), dtype: float64

count     84853
unique        7
top           C
freq      18345
Name: ProsperRating (Alpha), dtype: object

count    84853.000000
mean         5.950067
std          2.376501
min          1.000000
25%          4.000000
50%          6.000000
75%          8.000000
max         11.000000
Name: ProsperScore, dtype: float64

count    113937.000000
mean          2.774209
std           3.996797
min           0.000000
25%           1.000000
50%           1.000000
75%           3.000000
max          20.000000
Name: ListingCategory (numeric), dtype: float64

count     108422
unique        51
top           CA
freq       14717
Name: BorrowerState, dtype: object

count     110349
unique        67
top        Other
freq       28617
Name: Occupation, dtype: object

count       111682
unique           8
top       Employed
freq         67322
Name: EmploymentStatus, dtype: object

count    106312.000000
mean         96.071582
std          94.480605
min           0.000000
25%          26.000000
50%          67.000000
75%         137.000000
max         755.000000
Name: EmploymentStatusDuration, dtype: float64

count     113937
unique         2
top         True
freq       57478
Name: IsBorrowerHomeowner, dtype: object

count     113937
unique         2
top        False
freq      101218
Name: CurrentlyInGroup, dtype: object

count                       13341
unique                        706
top       783C3371218786870A73D20
freq                         1140
Name: GroupKey, dtype: object

count                  113937
unique                 112992
top       2013-12-23 09:38:12
freq                        6
Name: DateCreditPulled, dtype: object

count    113346.000000
mean        685.567731
std          66.458275
min           0.000000
25%         660.000000
50%         680.000000
75%         720.000000
max         880.000000
Name: CreditScoreRangeLower, dtype: float64

count    113346.000000
mean        704.567731
std          66.458275
min          19.000000
25%         679.000000
50%         699.000000
75%         739.000000
max         899.000000
Name: CreditScoreRangeUpper, dtype: float64

count                  113240
unique                  11585
top       1993-12-01 00:00:00
freq                      185
Name: FirstRecordedCreditLine, dtype: object

count    106333.000000
mean         10.317192
std           5.457866
min           0.000000
25%           7.000000
50%          10.000000
75%          13.000000
max          59.000000
Name: CurrentCreditLines, dtype: float64

count    106333.000000
mean          9.260164
std           5.022644
min           0.000000
25%           6.000000
50%           9.000000
75%          12.000000
max          54.000000
Name: OpenCreditLines, dtype: float64

count    113240.000000
mean         26.754539
std          13.637871
min           2.000000
25%          17.000000
50%          25.000000
75%          35.000000
max         136.000000
Name: TotalCreditLinespast7years, dtype: float64

count    113937.00000
mean          6.96979
std           4.63097
min           0.00000
25%           4.00000
50%           6.00000
75%           9.00000
max          51.00000
Name: OpenRevolvingAccounts, dtype: float64

count    113937.000000
mean        398.292161
std         447.159711
min           0.000000
25%         114.000000
50%         271.000000
75%         525.000000
max       14985.000000
Name: OpenRevolvingMonthlyPayment, dtype: float64

count    113240.000000
mean          1.435085
std           2.437507
min           0.000000
25%           0.000000
50%           1.000000
75%           2.000000
max         105.000000
Name: InquiriesLast6Months, dtype: float64

count    112778.000000
mean          5.584405
std           6.429946
min           0.000000
25%           2.000000
50%           4.000000
75%           7.000000
max         379.000000
Name: TotalInquiries, dtype: float64

count    113240.000000
mean          0.592052
std           1.978707
min           0.000000
25%           0.000000
50%           0.000000
75%           0.000000
max          83.000000
Name: CurrentDelinquencies, dtype: float64

count    106315.000000
mean        984.507059
std        7158.270157
min           0.000000
25%           0.000000
50%           0.000000
75%           0.000000
max      463881.000000
Name: AmountDelinquent, dtype: float64

count    112947.000000
mean          4.154984
std          10.160216
min           0.000000
25%           0.000000
50%           0.000000
75%           3.000000
max          99.000000
Name: DelinquenciesLast7Years, dtype: float64

count    113240.000000
mean          0.312646
std           0.727868
min           0.000000
25%           0.000000
50%           0.000000
75%           0.000000
max          38.000000
Name: PublicRecordsLast10Years, dtype: float64

count    106333.000000
mean          0.015094
std           0.154092
min           0.000000
25%           0.000000
50%           0.000000
75%           0.000000
max          20.000000
Name: PublicRecordsLast12Months, dtype: float64

count    1.063330e+05
mean     1.759871e+04
std      3.293640e+04
min      0.000000e+00
25%      3.121000e+03
50%      8.549000e+03
75%      1.952100e+04
max      1.435667e+06
Name: RevolvingCreditBalance, dtype: float64

count    106333.000000
mean          0.561309
std           0.317918
min           0.000000
25%           0.310000
50%           0.600000
75%           0.840000
max           5.950000
Name: BankcardUtilization, dtype: float64

count    106393.000000
mean      11210.225447
std       19818.361309
min           0.000000
25%         880.000000
50%        4100.000000
75%       13180.000000
max      646285.000000
Name: AvailableBankcardCredit, dtype: float64

count    106393.000000
mean         23.230034
std          11.871311
min           0.000000
25%          15.000000
50%          22.000000
75%          30.000000
max         126.000000
Name: TotalTrades, dtype: float64

count    106393.000000
mean          0.885897
std           0.148179
min           0.000000
25%           0.820000
50%           0.940000
75%           1.000000
max           1.000000
Name: TradesNeverDelinquent (percentage), dtype: float64

count    106393.000000
mean          0.802327
std           1.097637
min           0.000000
25%           0.000000
50%           0.000000
75%           1.000000
max          20.000000
Name: TradesOpenedLast6Months, dtype: float64

count    105383.000000
mean          0.275947
std           0.551759
min           0.000000
25%           0.140000
50%           0.220000
75%           0.320000
max          10.010000
Name: DebtToIncomeRatio, dtype: float64

count             113937
unique                 8
top       $25,000-49,999
freq               32192
Name: IncomeRange, dtype: object

count     113937
unique         2
top         True
freq      105268
Name: IncomeVerifiable, dtype: object

count    1.139370e+05
mean     5.608026e+03
std      7.478497e+03
min      0.000000e+00
25%      3.200333e+03
50%      4.666667e+03
75%      6.825000e+03
max      1.750003e+06
Name: StatedMonthlyIncome, dtype: float64

count                      113937
unique                     113066
top       CB1B37030986463208432A1
freq                            6
Name: LoanKey, dtype: object

count    22085.000000
mean         1.421100
std          0.764042
min          0.000000
25%          1.000000
50%          1.000000
75%          2.000000
max          8.000000
Name: TotalProsperLoans, dtype: float64

count    22085.000000
mean        22.934345
std         19.249584
min          0.000000
25%          9.000000
50%         16.000000
75%         33.000000
max        141.000000
Name: TotalProsperPaymentsBilled, dtype: float64

count    22085.000000
mean        22.271949
std         18.830425
min          0.000000
25%          9.000000
50%         15.000000
75%         32.000000
max        141.000000
Name: OnTimeProsperPayments, dtype: float64

count    22085.000000
mean         0.613629
std          2.446827
min          0.000000
25%          0.000000
50%          0.000000
75%          0.000000
max         42.000000
Name: ProsperPaymentsLessThanOneMonthLate, dtype: float64

count    22085.000000
mean         0.048540
std          0.556285
min          0.000000
25%          0.000000
50%          0.000000
75%          0.000000
max         21.000000
Name: ProsperPaymentsOneMonthPlusLate, dtype: float64

count    22085.000000
mean      8472.311961
std       7395.507650
min          0.000000
25%       3500.000000
50%       6000.000000
75%      11000.000000
max      72499.000000
Name: ProsperPrincipalBorrowed, dtype: float64

count    22085.000000
mean      2930.313906
std       3806.635075
min          0.000000
25%          0.000000
50%       1626.550000
75%       4126.720000
max      23450.950000
Name: ProsperPrincipalOutstanding, dtype: float64

count    18928.000000
mean        -3.223214
std         50.063567
min       -209.000000
25%        -35.000000
50%         -3.000000
75%         25.000000
max        286.000000
Name: ScorexChangeAtTimeOfListing, dtype: float64

count    113937.000000
mean        152.816539
std         466.320254
min           0.000000
25%           0.000000
50%           0.000000
75%           0.000000
max        2704.000000
Name: LoanCurrentDaysDelinquent, dtype: float64

count    16952.000000
mean        16.268464
std          9.005898
min          0.000000
25%          9.000000
50%         14.000000
75%         22.000000
max         44.000000
Name: LoanFirstDefaultedCycleNumber, dtype: float64

count    113937.000000
mean         31.896882
std          29.974184
min           0.000000
25%           6.000000
50%          21.000000
75%          65.000000
max         100.000000
Name: LoanMonthsSinceOrigination, dtype: float64

count    113937.000000
mean      69444.474271
std       38930.479610
min           1.000000
25%       37332.000000
50%       68599.000000
75%      101901.000000
max      136486.000000
Name: LoanNumber, dtype: float64

count    113937.00000
mean       8337.01385
std        6245.80058
min        1000.00000
25%        4000.00000
50%        6500.00000
75%       12000.00000
max       35000.00000
Name: LoanOriginalAmount, dtype: float64

count                  113937
unique                   1873
top       2014-01-22 00:00:00
freq                      491
Name: LoanOriginationDate, dtype: object

count      113937
unique         33
top       Q4 2013
freq        14450
Name: LoanOriginationQuarter, dtype: object

count                      113937
unique                      90831
top       63CA34120866140639431C9
freq                            9
Name: MemberKey, dtype: object

count    113937.000000
mean        272.475783
std         192.697812
min           0.000000
25%         131.620000
50%         217.740000
75%         371.580000
max        2251.510000
Name: MonthlyLoanPayment, dtype: float64

count    113937.000000
mean       4183.079489
std        4790.907234
min          -2.349900
25%        1005.760000
50%        2583.830000
75%        5548.400000
max       40702.390000
Name: LP_CustomerPayments, dtype: float64

count    113937.000000
mean       3105.536588
std        4069.527670
min           0.000000
25%         500.890000
50%        1587.500000
75%        4000.000000
max       35000.000000
Name: LP_CustomerPrincipalPayments, dtype: float64

count    113937.000000
mean       1077.542901
std        1183.414168
min          -2.349900
25%         274.870000
50%         700.840100
75%        1458.540000
max       15617.030000
Name: LP_InterestandFees, dtype: float64

count    113937.000000
mean        -54.725641
std          60.675425
min        -664.870000
25%         -73.180000
50%         -34.440000
75%         -13.920000
max          32.060000
Name: LP_ServiceFees, dtype: float64

count    113937.000000
mean        -14.242698
std         109.232758
min       -9274.750000
25%           0.000000
50%           0.000000
75%           0.000000
max           0.000000
Name: LP_CollectionFees, dtype: float64

count    113937.000000
mean        700.446342
std        2388.513831
min         -94.200000
25%           0.000000
50%           0.000000
75%           0.000000
max       25000.000000
Name: LP_GrossPrincipalLoss, dtype: float64

count    113937.000000
mean        681.420499
std        2357.167068
min        -954.550000
25%           0.000000
50%           0.000000
75%           0.000000
max       25000.000000
Name: LP_NetPrincipalLoss, dtype: float64

count    113937.000000
mean         25.142686
std         275.657937
min           0.000000
25%           0.000000
50%           0.000000
75%           0.000000
max       21117.900000
Name: LP_NonPrincipalRecoverypayments, dtype: float64

count    113937.000000
mean          0.998584
std           0.017919
min           0.700000
25%           1.000000
50%           1.000000
75%           1.000000
max           1.012500
Name: PercentFunded, dtype: float64

count    113937.000000
mean          0.048027
std           0.332353
min           0.000000
25%           0.000000
50%           0.000000
75%           0.000000
max          39.000000
Name: Recommendations, dtype: float64

count    113937.000000
mean          0.023460
std           0.232412
min           0.000000
25%           0.000000
50%           0.000000
75%           0.000000
max          33.000000
Name: InvestmentFromFriendsCount, dtype: float64

count    113937.000000
mean         16.550751
std         294.545422
min           0.000000
25%           0.000000
50%           0.000000
75%           0.000000
max       25000.000000
Name: InvestmentFromFriendsAmount, dtype: float64

count    113937.000000
mean         80.475228
std         103.239020
min           1.000000
25%           2.000000
50%          44.000000
75%         115.000000
max        1189.000000
Name: Investors, dtype: float64



In [37]:
x = df['BorrowerAPR'].values
y = df['BorrowerRate'].values

plt.scatter(x, y)
plt.show()



In [48]:
col_1 = str()
col_2 = str()
for col, dtype in df.dtypes.iteritems():
    if dtype == 'float64':
        if col_1 == '':
            col_1 = col
            continue
        else:
            col_2 = col
            
            x = df[col_1].values
            y = df[col_2].values
            
            print(spearmanr(x,y,nan_policy='omit'))

            plt.title(f'Comparing {col_1} and {col_2}')
            plt.scatter(x, y)
            plt.show()
            
            col_1 = col_2


SpearmanrResult(correlation=0.9894193209482549, pvalue=0.0)
SpearmanrResult(correlation=0.9992520568276085, pvalue=0.0)
SpearmanrResult(correlation=0.9183727240571069, pvalue=0.0)
SpearmanrResult(correlation=0.8845522705361033, pvalue=0.0)
SpearmanrResult(correlation=0.7524821355958692, pvalue=0.0)
SpearmanrResult(correlation=-0.7461856431766154, pvalue=0.0)
SpearmanrResult(correlation=0.7059401334742064, pvalue=0.0)
SpearmanrResult(correlation=-0.005061259646310271, pvalue=0.14044276643702816)
SpearmanrResult(correlation=0.0811902285733982, pvalue=6.343740673150766e-155)
SpearmanrResult(correlation=1.0, pvalue=0.0)
SpearmanrResult(correlation=0.15643758592809445, pvalue=0.0)
SpearmanrResult(correlation=0.95545268346175, pvalue=0.0)
SpearmanrResult(correlation=0.5664641248678572, pvalue=0.0)
SpearmanrResult(correlation=0.42830538889371245, pvalue=0.0)
SpearmanrResult(correlation=-0.10727842206155681, pvalue=5.163799954683272e-287)
SpearmanrResult(correlation=0.6130672412160673, pvalue=0.0)
SpearmanrResult(correlation=0.13407117119356377, pvalue=0.0)
SpearmanrResult(correlation=0.8861378002593798, pvalue=0.0)
SpearmanrResult(correlation=0.375849841851563, pvalue=0.0)
SpearmanrResult(correlation=0.3604269013480139, pvalue=0.0)
SpearmanrResult(correlation=0.2238442855856443, pvalue=0.0)
SpearmanrResult(correlation=-0.08623285802009668, pvalue=1.3031536338917587e-174)
SpearmanrResult(correlation=0.4229848379794714, pvalue=0.0)
SpearmanrResult(correlation=-0.47788890784084465, pvalue=0.0)
SpearmanrResult(correlation=0.28730054216668194, pvalue=0.0)
SpearmanrResult(correlation=0.03706472460775611, pvalue=1.1394590120555092e-33)
SpearmanrResult(correlation=-0.00233145315140626, pvalue=0.44697722928324224)
SpearmanrResult(correlation=0.05729620875286312, pvalue=5.020323961806811e-72)
SpearmanrResult(correlation=-0.26315212541344307, pvalue=0.0)
SpearmanrResult(correlation=0.05328936828894872, pvalue=2.2901533146187827e-15)
SpearmanrResult(correlation=0.6186597716766913, pvalue=0.0)
SpearmanrResult(correlation=0.988382851833924, pvalue=0.0)
SpearmanrResult(correlation=0.15402174093882215, pvalue=2.5937468257258588e-117)
SpearmanrResult(correlation=0.3179686055633133, pvalue=0.0)
SpearmanrResult(correlation=0.01460631971603419, pvalue=0.029958287741594283)
SpearmanrResult(correlation=0.39079069212792067, pvalue=0.0)
SpearmanrResult(correlation=-0.2226582957394165, pvalue=2.7831255559073114e-211)
SpearmanrResult(correlation=0.20388000294480862, pvalue=3.3917757384622225e-24)
SpearmanrResult(correlation=-0.0003698671715093867, pvalue=0.9615942279839989)
SpearmanrResult(correlation=0.28662617121738615, pvalue=0.0)
SpearmanrResult(correlation=0.9768538315817462, pvalue=0.0)
SpearmanrResult(correlation=0.6503519127689852, pvalue=0.0)
SpearmanrResult(correlation=-0.90722088444604, pvalue=0.0)
SpearmanrResult(correlation=0.05966990259765053, pvalue=2.2413509894235067e-90)
SpearmanrResult(correlation=-0.3474817287718461, pvalue=0.0)
SpearmanrResult(correlation=0.9869767909912213, pvalue=0.0)
SpearmanrResult(correlation=0.3597547679820946, pvalue=0.0)
SpearmanrResult(correlation=0.0010356890578058506, pvalue=0.7266475475077019)
SpearmanrResult(correlation=0.002403584069907327, pvalue=0.41718687440520696)


In [19]:
for col, dtype in df.dtypes.iteritems():
    print(col, dtype)


ListingKey object
ListingNumber int64
ListingCreationDate object
CreditGrade object
Term int64
LoanStatus object
ClosedDate object
BorrowerAPR float64
BorrowerRate float64
LenderYield float64
EstimatedEffectiveYield float64
EstimatedLoss float64
EstimatedReturn float64
ProsperRating (numeric) float64
ProsperRating (Alpha) object
ProsperScore float64
ListingCategory (numeric) int64
BorrowerState object
Occupation object
EmploymentStatus object
EmploymentStatusDuration float64
IsBorrowerHomeowner bool
CurrentlyInGroup bool
GroupKey object
DateCreditPulled object
CreditScoreRangeLower float64
CreditScoreRangeUpper float64
FirstRecordedCreditLine object
CurrentCreditLines float64
OpenCreditLines float64
TotalCreditLinespast7years float64
OpenRevolvingAccounts int64
OpenRevolvingMonthlyPayment float64
InquiriesLast6Months float64
TotalInquiries float64
CurrentDelinquencies float64
AmountDelinquent float64
DelinquenciesLast7Years float64
PublicRecordsLast10Years float64
PublicRecordsLast12Months float64
RevolvingCreditBalance float64
BankcardUtilization float64
AvailableBankcardCredit float64
TotalTrades float64
TradesNeverDelinquent (percentage) float64
TradesOpenedLast6Months float64
DebtToIncomeRatio float64
IncomeRange object
IncomeVerifiable bool
StatedMonthlyIncome float64
LoanKey object
TotalProsperLoans float64
TotalProsperPaymentsBilled float64
OnTimeProsperPayments float64
ProsperPaymentsLessThanOneMonthLate float64
ProsperPaymentsOneMonthPlusLate float64
ProsperPrincipalBorrowed float64
ProsperPrincipalOutstanding float64
ScorexChangeAtTimeOfListing float64
LoanCurrentDaysDelinquent int64
LoanFirstDefaultedCycleNumber float64
LoanMonthsSinceOrigination int64
LoanNumber int64
LoanOriginalAmount int64
LoanOriginationDate object
LoanOriginationQuarter object
MemberKey object
MonthlyLoanPayment float64
LP_CustomerPayments float64
LP_CustomerPrincipalPayments float64
LP_InterestandFees float64
LP_ServiceFees float64
LP_CollectionFees float64
LP_GrossPrincipalLoss float64
LP_NetPrincipalLoss float64
LP_NonPrincipalRecoverypayments float64
PercentFunded float64
Recommendations int64
InvestmentFromFriendsCount int64
InvestmentFromFriendsAmount float64
Investors int64