-- ITERATION 0 --
weights (w) =
[[ 11.649]
[ -0.205]
[ -5.62 ]]
(layer 0)
X * w =
[[-5.62 ]
[-5.825]
[ 6.029]
[ 5.824]]
(layer 1)
sigmoid(X * w)=
[[ 0.004]
[ 0.003]
[ 0.998]
[ 0.997]]
(error layer)
y - sigmoid(X * w) =
[[-0.004]
[-0.003]
[ 0.002]
[ 0.003]]
d/dx sigmoid(X * w) =
[[ 0.004]
[ 0.003]
[ 0.002]
[ 0.003]]
(y - sigmoid(X * w)) * (d/dx sigmoid(X * w))=
[[ -1.00000000e-05]
[ -1.00000000e-05]
[ 1.00000000e-05]
[ 1.00000000e-05]]
np.dot(layer0.T, layer1_delta) =
[[ 1.00000000e-05]
[ 0.00000000e+00]
[ -1.00000000e-05]]
weights += np.dot(layer0.T, layer1_delta)=
[[ 11.64919722]
[ -0.20489527]
[ -5.62017609]]
-- ITERATION 10 --
weights (w) =
[[ 11.649]
[ -0.205]
[ -5.62 ]]
(layer 0)
X * w =
[[-5.62 ]
[-5.825]
[ 6.029]
[ 5.824]]
(layer 1)
sigmoid(X * w)=
[[ 0.004]
[ 0.003]
[ 0.998]
[ 0.997]]
(error layer)
y - sigmoid(X * w) =
[[-0.004]
[-0.003]
[ 0.002]
[ 0.003]]
d/dx sigmoid(X * w) =
[[ 0.004]
[ 0.003]
[ 0.002]
[ 0.003]]
(y - sigmoid(X * w)) * (d/dx sigmoid(X * w))=
[[ -1.00000000e-05]
[ -1.00000000e-05]
[ 1.00000000e-05]
[ 1.00000000e-05]]
np.dot(layer0.T, layer1_delta) =
[[ 1.00000000e-05]
[ 0.00000000e+00]
[ -1.00000000e-05]]
weights += np.dot(layer0.T, layer1_delta)=
[[ 11.64934134]
[ -0.20489511]
[ -5.62024828]]
-- ITERATION 100 --
weights (w) =
[[ 11.651]
[ -0.205]
[ -5.621]]
(layer 0)
X * w =
[[-5.621]
[-5.826]
[ 6.03 ]
[ 5.825]]
(layer 1)
sigmoid(X * w)=
[[ 0.004]
[ 0.003]
[ 0.998]
[ 0.997]]
(error layer)
y - sigmoid(X * w) =
[[-0.004]
[-0.003]
[ 0.002]
[ 0.003]]
d/dx sigmoid(X * w) =
[[ 0.004]
[ 0.003]
[ 0.002]
[ 0.003]]
(y - sigmoid(X * w)) * (d/dx sigmoid(X * w))=
[[ -1.00000000e-05]
[ -1.00000000e-05]
[ 1.00000000e-05]
[ 1.00000000e-05]]
np.dot(layer0.T, layer1_delta) =
[[ 1.00000000e-05]
[ 0.00000000e+00]
[ -1.00000000e-05]]
weights += np.dot(layer0.T, layer1_delta)=
[[ 11.65063753]
[ -0.20489364]
[ -5.6208975 ]]
-- ITERATION 1000 --
weights (w) =
[[ 11.663]
[ -0.205]
[ -5.627]]
(layer 0)
X * w =
[[-5.627]
[-5.832]
[ 6.036]
[ 5.831]]
(layer 1)
sigmoid(X * w)=
[[ 0.004]
[ 0.003]
[ 0.998]
[ 0.997]]
(error layer)
y - sigmoid(X * w) =
[[-0.004]
[-0.003]
[ 0.002]
[ 0.003]]
d/dx sigmoid(X * w) =
[[ 0.004]
[ 0.003]
[ 0.002]
[ 0.003]]
(y - sigmoid(X * w)) * (d/dx sigmoid(X * w))=
[[ -1.00000000e-05]
[ -1.00000000e-05]
[ 1.00000000e-05]
[ 1.00000000e-05]]
np.dot(layer0.T, layer1_delta) =
[[ 1.00000000e-05]
[ 0.00000000e+00]
[ -1.00000000e-05]]
weights += np.dot(layer0.T, layer1_delta)=
[[ 11.66350828]
[ -0.20487917]
[ -5.62734408]]
********************
Output after training:
[[ 0.00337621]
[ 0.00275283]
[ 0.99775374]
[ 0.99724475]]
Rounded output:
[[ 0.]
[ 0.]
[ 1.]
[ 1.]]