In [ ]:
#!/usr/bin/python

""" lecture and example code for decision tree unit """

import sys
from class_vis import prettyPicture, output_image
from prep_terrain_data import makeTerrainData

import matplotlib.pyplot as plt
import numpy as np
import pylab as pl
from classifyDT import classify

features_train, labels_train, features_test, labels_test = makeTerrainData()



### the classify() function in classifyDT is where the magic
### happens--it's your job to fill this in!
clf = classify(features_train, labels_train)







#### grader code, do not modify below this line

prettyPicture(clf, features_test, labels_test)
output_image("test.png", "png", open("test.png", "rb").read())

In [ ]:
def classify(features_train, labels_train):
    
    ### your code goes here--should return a trained decision tree classifer
    from sklearn import tree
    clf = tree.DecisionTreeClassifier()
    clf = clf.fit(features_train, labels_train)
    
    
    return clf

In [ ]:
import scipy.stats
print scipy.stats.entropy([2,1],base=2)