OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 1.000
Model: OLS Adj. R-squared: 1.000
Method: Least Squares F-statistic: 2.011e+31
Date: Thu, 08 Jan 2015 Prob (F-statistic): 6.84e-123
Time: 22:27:58 Log-Likelihood: 277.17
No. Observations: 10 AIC: -550.3
Df Residuals: 8 BIC: -549.7
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
const -1.99e-13 1.83e-13 -1.086 0.309 -6.21e-13 2.24e-13
x1 2.0000 4.46e-16 4.48e+15 0.000 2.000 2.000
==============================================================================
Omnibus: 7.486 Durbin-Watson: 0.007
Prob(Omnibus): 0.024 Jarque-Bera (JB): 3.776
Skew: -1.500 Prob(JB): 0.151
Kurtosis: 3.250 Cond. No. 959.
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.