In [1]:
include("../src/HPFEM.jl")
Out[1]:
In [2]:
nel = 10
nnodes = nel + 1
idir = [1,nnodes]
M = 5
Q = M+2
bas = HPFEM.Basis1d(M,Q)
lmap = HPFEM.locmap(bas)
dof = HPFEM.DofMap1d(lmap, nnodes, idir);
In [3]:
uexact(x) = sin(x)
rhsfun(x) = 2*sin(x)
Out[3]:
In [4]:
a = 1.0
b = 15.0
nodes = collect(linspace(a, b, nnodes));
In [5]:
elems = [HPFEM.Element1d(e, nodes[e], nodes[e+1], bas) for e = 1:nel];
In [6]:
solver = HPFEM.CholeskySC(dof, HPFEM.BBSymTri);
In [7]:
for e = 1:nel
Ae = zeros(M, M)
HPFEM.add_stiff_matrix!(bas, elems[e], Ae)
HPFEM.add_mass_matrix!(bas, elems[e], Ae)
HPFEM.add_local_matrix(solver, e, Ae)
end
In [8]:
Fe = zeros(HPFEM.nmodes(lmap), nel)
for e = 1:nel
fe = rhsfun(elems[e].x)
HPFEM.add_rhs!(bas, elems[e], fe, sub(Fe, :, e))
end
# Apply Dirichilet BCs:
Fe[1,1] = uexact(a);
Fe[2,nel] = uexact(b);
In [9]:
HPFEM.solve!(solver, Fe);
In [10]:
nξ = 101
ξ = collect(linspace(-1,1,nξ));
ϕ = zeros(nξ, M)
for i = 1:M
ϕ[:,i] = bas(ξ, i)
end
Ue = ϕ * Fe;
In [11]:
using PyPlot
maxerr = 0.0
for e = 1:nel
el = elems[e]
x = (1-ξ)*el.a/2 + (1+ξ)*el.b/2
uu = uexact(x)
err = maxabs(uu-Ue[:,e])
if err > maxerr maxerr = err end
plot(x, Ue[:,e], "r", x, uu, "b")
end
maxerr
Out[11]:
In [ ]: