In [31]:
include("HPFEM.jl")
#elemento
b = [1,2] #modos de fronteira
i = [3] #modos internos
lnum = HPFEM.LocalNumSys1d(b,i)
Out[31]:
In [32]:
lnum.bndry
Out[32]:
In [33]:
Nel = 2
nnodes = Nel + 1
idir = [1,nnodes]
maping = HPFEM.DofMap1d(lnum,nnodes,idir);
dof_map = zeros(Int, 2, Nel)
for i = 1:Nel
dof_map[1,i] = i
dof_map[2,i] = i+1
end
dof_map
ii = [nnodes;1:(nnodes-1);]
nb = Nel+1
nd = 2
for e in 1:Nel
dof_map[1,e] = ii[e]
dof_map[2,e] = ii[e+1]
end
idir = Dict{Int,Vector{Int}}()
nbslv = nb - nd
ib = HPFEM.bndry_idx(lnum)
for e= 1:Nel
if dof_map[1,e] > nbslv && dof_map[2,e] > nbslv
idir[e] = [ib[1],ib[2]]
elseif dof_map[1,e] > nbslv
idir[e] = [ib[1]]
elseif dof_map[2,e] > nbslv
idir[e] = [ib[2]]
end
end
idir
In [34]:
dof_map
Out[34]:
In [26]:
using Jacobi
using PyPlot
In [27]:
function ψj(p,E,Q)
if(p == 1)
return (1-E)/2
elseif(p == 2)
return (1+E)/2
else
return (1-E)*(1+E)/4 .* jacobi(E, p-3, 1, 1)
end
end
Out[27]:
In [28]:
x = collect([-1:0.001:1])
y = [ψj(3,x,0) for x in -1:0.001:1]
plot(x,y)
title("")
Out[28]:
In [ ]:
In [ ]: