In [161]:
include("../src/HPFEM.jl");
In [162]:
using Jacobi
using PyPlot
In [163]:
M=20
Q=M
#
b1 = HPFEM.Basis1d(M,Q);
#
lagr = HPFEM.Lagrange1d(M);
quad = HPFEM.QuadType(Q);
b2 = HPFEM.Basis1d(lagr, quad);
#;
b3 = HPFEM.SEM1d(M);
#
leg = HPFEM.Legendre1d(M);
b4 = HPFEM.Basis1d(leg, quad);
In [ ]:
In [164]:
el1 = HPFEM.Element1d(1, -1.0, 1.0, b1);
el2 = HPFEM.Element1d(1, -1.0, 1.0, b2);
el3 = HPFEM.Element1d(1, -1.0, 1.0, b3);
el4 = HPFEM.Element1d(1, -1.0, 1.0, b4);
In [165]:
M1 = HPFEM.mass_matrix(b1, el1);
M2 = HPFEM.mass_matrix(b2, el2);
M3 = zeros(M,M);
HPFEM.add_mass_matrix!(b3, el3, M3);
M4 = HPFEM.mass_matrix(b4, el4);
In [166]:
round(M1,5);
In [167]:
M2
Out[167]:
In [191]:
Fe = zeros(Q)
fe = fun(el2.ξ)
HPFEM.add_rhs!(b2, el2, fe, Fe)
Fe[1] = 0
Fe[Q] = 0
u = M2\Fe
#plot(u)
Q2 = 100
x =linspace(-1,1,Q2)
lagr5 = HPFEM.Lagrange1d(M);
quad5 = HPFEM.QuadType(Q2);
b5 = HPFEM.Basis1d(lagr5, quad5);
plot(x,b5.ϕ*u)
plot(x,fun(x))
Out[191]:
In [169]:
sum(M2,2)
Out[169]:
In [170]:
round(M4,5)
Out[170]:
In [171]:
sum(M1,2)
Out[171]:
In [172]:
using Jacobi
using PyPlot
In [173]:
z = zglj(5)
x = linspace(-1,1,101)
for i in 1:3
plot(x,lagrange(i,x,z),label="\$ l_$i \$")
legend()
end
In [174]:
quad = HPFEM.QuadType(5)
quad.w
Out[174]:
In [175]:
z = zglj(5)
w = wglj(z)
quad.Q
Out[175]:
In [176]:
methods(HPFEM.lagrange1d)
In [178]:
b3.w
Out[178]: