In [65]:
include("../src/HPFEM.jl");
In [66]:
M=5
Q=M+2
#
b1 = HPFEM.Basis1d(M,Q);
#
lagr = HPFEM.Lagrange1d(M);
quad = HPFEM.QuadType(Q);
b2 = HPFEM.Basis1d(lagr, quad);
#;
b3 = HPFEM.SEM1d(M);
#
leg = HPFEM.Legendre1d(M);
b4 = HPFEM.Basis1d(leg, quad);
In [67]:
el1 = HPFEM.Element1d(1, -1.0, 1.0, b1);
el2 = HPFEM.Element1d(1, -1.0, 1.0, b2);
el3 = HPFEM.Element1d(1, -1.0, 1.0, b3);
el4 = HPFEM.Element1d(1, -1.0, 1.0, b4);
In [68]:
M1 = HPFEM.mass_matrix(b1, el1);
M2 = HPFEM.mass_matrix(b2, el2);
M3 = zeros(M,M);
HPFEM.add_mass_matrix!(b3, el3, M3);
M4 = HPFEM.mass_matrix(b4, el4);
In [69]:
round(M1,5);
In [70]:
M2
Out[70]:
In [73]:
sum(M2,2)
Out[73]:
In [74]:
round(M4,5)
Out[74]:
In [75]:
sum(M1,2)
Out[75]:
In [76]:
using Jacobi
using PyPlot
In [77]:
z = zglj(5)
x = linspace(-1,1,101)
for i in 1:3
plot(x,lagrange(i,x,z),label="\$ l_$i \$")
legend()
end
In [78]:
quad = HPFEM.QuadType(5)
quad.w
Out[78]:
In [79]:
z = zglj(5)
w = wglj(z)
quad.Q
Out[79]:
In [80]:
methods(HPFEM.lagrange1d)