In [6]:
# import
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_iris

%matplotlib inline

In [79]:
# reading data
data = pd.DataFrame(load_iris()['data'])
target = pd.DataFrame(load_iris()['target'])
iris =pd.concat([data, target], axis=1)
iris.columns = ['sepal_length','sepal_width','petal_length','petal_width', 'species']

In [80]:
iris[:3]


Out[80]:
sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0

In [88]:
# I have already import matplotlib library (python plotting)
# now plotting the data 
setosa = iris[iris['species']==0]
versi = iris[iris['species']==1]
vergi = iris[iris['species']==2]

In [89]:
# plotting "sepal length" and "sepal width" for 

plt.scatter(setosa.iloc[:, 0], setosa.iloc[:, 1])


Out[89]:
<matplotlib.collections.PathCollection at 0x2406703c278>

In [96]:
# plotting "sepal length" histogram 

plt.hist(setosa.iloc[:, 0])


Out[96]:
(array([  4.,   1.,   6.,   5.,  12.,   8.,   4.,   5.,   2.,   3.]),
 array([ 4.3 ,  4.45,  4.6 ,  4.75,  4.9 ,  5.05,  5.2 ,  5.35,  5.5 ,
         5.65,  5.8 ]),
 <a list of 10 Patch objects>)

In [115]:
plt.boxplot(setosa.iloc[:, 2])


Out[115]:
{'boxes': [<matplotlib.lines.Line2D at 0x240697ee198>],
 'caps': [<matplotlib.lines.Line2D at 0x240697f3ba8>,
  <matplotlib.lines.Line2D at 0x240697f3d30>],
 'fliers': [<matplotlib.lines.Line2D at 0x240697f8da0>],
 'means': [],
 'medians': [<matplotlib.lines.Line2D at 0x240697f8588>],
 'whiskers': [<matplotlib.lines.Line2D at 0x240697eeb38>,
  <matplotlib.lines.Line2D at 0x240697eecc0>]}

In [111]:
setosa.iloc[:, 0:2]


Out[111]:
sepal_length sepal_width
0 5.1 3.5
1 4.9 3.0
2 4.7 3.2
3 4.6 3.1
4 5.0 3.6
5 5.4 3.9
6 4.6 3.4
7 5.0 3.4
8 4.4 2.9
9 4.9 3.1
10 5.4 3.7
11 4.8 3.4
12 4.8 3.0
13 4.3 3.0
14 5.8 4.0
15 5.7 4.4
16 5.4 3.9
17 5.1 3.5
18 5.7 3.8
19 5.1 3.8
20 5.4 3.4
21 5.1 3.7
22 4.6 3.6
23 5.1 3.3
24 4.8 3.4
25 5.0 3.0
26 5.0 3.4
27 5.2 3.5
28 5.2 3.4
29 4.7 3.2
30 4.8 3.1
31 5.4 3.4
32 5.2 4.1
33 5.5 4.2
34 4.9 3.1
35 5.0 3.2
36 5.5 3.5
37 4.9 3.1
38 4.4 3.0
39 5.1 3.4
40 5.0 3.5
41 4.5 2.3
42 4.4 3.2
43 5.0 3.5
44 5.1 3.8
45 4.8 3.0
46 5.1 3.8
47 4.6 3.2
48 5.3 3.7
49 5.0 3.3

In [ ]: