In [ ]:
import graphlab
In [ ]:
song_data = graphlab.SFrame('song_data.gl/')
In [ ]:
song_data.head()
In [ ]:
graphlab.canvas.set_target('ipynb')
In [ ]:
song_data['song'].show()
In [ ]:
len(song_data)
In [ ]:
users = song_data['user_id'].unique()
In [ ]:
len(users)
In [ ]:
train_data,test_data = song_data.random_split(.8,seed=0)
In [ ]:
popularity_model = graphlab.popularity_recommender.create(train_data,
user_id='user_id',
item_id='song')
In [ ]:
popularity_model.recommend(users=[users[0]])
In [ ]:
popularity_model.recommend(users=[users[1]])
In [ ]:
personalized_model = graphlab.item_similarity_recommender.create(train_data,
user_id='user_id',
item_id='song')
In [ ]:
personalized_model.recommend(users=[users[0]])
In [ ]:
personalized_model.recommend(users=[users[1]])
In [ ]:
personalized_model.get_similar_items(['With Or Without You - U2'])
In [ ]:
personalized_model.get_similar_items(['Chan Chan (Live) - Buena Vista Social Club'])
In [ ]:
if graphlab.version[:3] >= "1.6":
model_performance = graphlab.compare(test_data, [popularity_model, personalized_model], user_sample=0.05)
graphlab.show_comparison(model_performance,[popularity_model, personalized_model])
else:
%matplotlib inline
model_performance = graphlab.recommender.util.compare_models(test_data, [popularity_model, personalized_model], user_sample=.05)
The curve shows that the personalized model provides much better performance.
In [ ]: