In [1]:
import numpy
In [7]:
data = numpy.loadtxt(fname='inflammation-data/inflammation-01.csv', delimiter=',')
In [6]:
whos
In [8]:
print(data)
In [9]:
print(type(data))
In [10]:
print(data.shape)
In [11]:
print("The first value in data: ", data[0, 0])
In [12]:
print("The middle value in data: ", data[30,20])
In [13]:
print("An array of data...\n", data[5:10, 0:10])
In [14]:
doubledata = data * 2.0
In [15]:
print(doubledata)
In [16]:
print('Maximum inflamation: ', data.max())
In [17]:
print("Minimum inflamation: ", data.min())
In [18]:
print("Standard deviation: ", data.std())
In [20]:
print("Patient 0 Max Inflammation: ", data[0, :].max())
In [21]:
print("Patient 2 Max Inflammation: ", data[2, :].max())
In [26]:
print("Mean inflammation per patient: \n", data.mean(axis=1))
In [24]:
print("Mean inflammation per day: \n", data.mean(axis=0))
In [34]:
import matplotlib.pyplot
% matplotlib inline
image = matplotlib.pyplot.imshow(data)
matplotlib.pyplot.show(image)
In [35]:
ave_inflammation_t = data.mean(axis=0)
ave_t_plot = matplotlib.pyplot.plot(ave_inflammation_t)
matplotlib.pyplot.show(ave_t_plot)
In [ ]: