In [2]:
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
import pandas as pd
In [3]:
# CARGAR DATASET DE DROPBOX
#-----------------------------------------------------------------
data = pd.read_csv('../Recursos/indian_liver_patient.csv')
data=data.dropna()
data["Gender"] = pd.Categorical.from_array(data["Gender"]).codes
data['Dataset']=data['Dataset']-1
data = data.as_matrix()
data = np.matrix(data)
# CREA dataset TRAIN y TEST
#---------------------------------------------------------------------------------------------
np.random.seed(123)
m_train = np.random.rand(len(data)) < 0.5
data_train = data[m_train,]
data_test = data[~m_train,]
# CLASE
#---------------------------------------------------------------------------------------------
clase_train = data_train[:,-1]
print (clase_train)
clase_train = clase_train.A1 #convierte de matriz a vector
clase_test = data_test[:,-1]
clase_test = clase_test.A1 #convierte de matriz a vector
# MODELO
#---------------------------------------------------------------------------------------------
modelo_lr = LogisticRegression()
modelo_lr.fit(X=data_train[:,:-1],y=clase_train)
# PREDICCION
#---------------------------------------------------------------------------------------------
predicion = modelo_lr.predict(data_test[:,:-1])
# METRICAS
#---------------------------------------------------------------------------------------------
print(metrics.classification_report(y_true=clase_test, y_pred=predicion))
print(pd.crosstab(data_test[:,-1].A1, predicion, rownames=['REAL'], colnames=['PREDICCION']))
In [5]:
x = np . arange ( 10 )
x
Out[5]:
In [6]:
x [ 2 : 5 ]
#array ([2, 3, 4])
Out[6]:
In [7]:
x [: - 7 ]
#array ([0, 1, 2])
Out[7]:
In [8]:
x [ 1 : 7 : 2 ]
#array ([1, 3, 5])
Out[8]:
In [12]:
y = np.arange(35).reshape(5,7)
y
Out[12]:
In [13]:
y [ 1 :5 : 2 , :: 3 ]
Out[13]:
In [ ]: