In [30]:
from sympy import * 
from galgebra.ga import Ga

# create G3 from the  orthonoormal basis: e1, e2,n. 
(ga,e1,e2,e3) = Ga.build('e1 e2 e3',g=[1,1,1])
j = ga.I()

In [31]:
vector = lambda s:  ga.mv(s, 'vector')

v,w = vector('v'), vector('w')

In [32]:
v*w


Out[32]:
\begin{equation*} \left ( v^{1} w^{1} + v^{2} w^{2} + v^{3} w^{3}\right ) + \left ( v^{1} w^{2} - v^{2} w^{1}\right ) e_{1}\wedge e_{2} + \left ( v^{1} w^{3} - v^{3} w^{1}\right ) e_{1}\wedge e_{3} + \left ( v^{2} w^{3} - v^{3} w^{2}\right ) e_{2}\wedge e_{3} \end{equation*}

In [ ]: