In [3]:
#Importing necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('ggplot')
import gmplot
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
%matplotlib inline
In [4]:
# Read Data from csv file
df = pd.read_csv("part3_data.csv")
df.describe()
Out[4]:
In [5]:
def analysis(df):
df.describe()
df.mean()
plt.rcParams['figure.figsize'] = (15,15)
plt.scatter(df.latitude, df.longitude,c=np.arange(len(df.latitude)))
plt.title("Spatial distribution of coordinates")
plt.xlabel("Latitude")
plt.ylabel("Longitude")
plt.show()
gmap = gmplot.GoogleMapPlotter(40.088, -88.281, 16)
# Scatter plot on Google Map
gmap.scatter(df["latitude"],df["longitude"], size=40, marker=False)
gmap.draw("scatter.html")
#Heatmap on Google Map
gmap.heatmap(df["latitude"],df["longitude"])
gmap.draw("heatmap.html")
#<--- --->
cat_uniq = df.categorical.unique()
quants = ['quant1', 'quant2', 'quant3']
color=np.random.rand(10,3)
# Subplots
for i in range(1,4):
plt.subplot(2,2,i)
plt.bar(np.arange(len(cat_uniq)), df.groupby('categorical').sum()[quants[i-1]], color=color)
plt.xticks(np.arange(len(cat_uniq)), cat_uniq, rotation = 45)
plt.title("Sum of "+ quants[i-1] + " across all categories")
plt.subplots_adjust(wspace=.2, hspace=.3)
plt.show()
ax = Axes3D(plt.gcf())
ax.scatter(df['quant1'].tolist(),df['quant2'].tolist(),df['quant3'].tolist(), c=np.arange(len(df.latitude)))
ax.set_xlabel('Quant 1')
ax.set_ylabel('Quant 2')
ax.set_zlabel('Quant 3')
ax.set_title('3D distribution of all the quant values')
In [6]:
analysis(df)
In [ ]:
In [ ]: