In [1]:
import pandas as pd
import numpy as np

Evolution d'indicateurs dans les communes :

Chargement de nos données :


In [2]:
commune_metropole = pd.read_csv('data/commune_metropole.csv', encoding='utf-8')

In [3]:
commune_metropole.shape


Out[3]:
(36742, 6)

In [4]:
commune_metropole.head()


Out[4]:
COM status mean_altitude superficie is_metropole metropole_name
0 39007 Commune simple 587.0 582.0 0 NaN
1 88086 Commune simple 454.0 396.0 0 NaN
2 62627 Commune simple 49.0 426.0 0 NaN
3 14020 Commune simple 33.0 987.0 0 NaN
4 11091 Chef-lieu canton 455.0 1605.0 0 NaN

In [5]:
insee = pd.read_csv('data/insee.csv',
                    sep=";",                       # séparateur du fichier
                    dtype={'COM' : np.dtype(str)}, # On force la colonne COM est être en string
                    encoding='utf-8')              # encoding


/Users/babou/anaconda/lib/python2.7/site-packages/IPython/core/interactiveshell.py:2723: DtypeWarning: Columns (0,5,6,7,9,336,337,339,340) have mixed types. Specify dtype option on import or set low_memory=False.
  interactivity=interactivity, compiler=compiler, result=result)

In [6]:
insee.shape


Out[6]:
(51989, 1031)

In [7]:
insee.info()


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51989 entries, 0 to 51988
Columns: 1031 entries, CODGEO to C12_ACTOCC15P_TCOM
dtypes: float64(1016), int64(2), object(13)
memory usage: 408.9+ MB

In [9]:
insee.head()


Out[9]:
CODGEO LIBGEO COM LIBCOM REG DEP ARR CV ZE2010 UU2010 ... P12_ACTOCC15P_ILT3 P12_ACTOCC15P_ILT4 P12_ACTOCC15P_ILT5 P12_ACTOCC15P_ILT45D C12_ACTOCC15P C12_ACTOCC15P_PAS C12_ACTOCC15P_MAR C12_ACTOCC15P_DROU C12_ACTOCC15P_VOIT C12_ACTOCC15P_TCOM
0 010040101 Les Perouses-Triangle D'Activite 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 112.198631 4.828213 0.000000 NaN 715.635129 75.289455 119.660483 21.756694 407.353725 91.574773
1 010040102 Longeray-Gare 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 251.078104 1.056829 0.000000 NaN 1478.540370 57.685313 168.621858 26.249674 1003.722497 222.261029
2 010040201 Centre-St Germain-Vareilles 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 303.454850 12.282740 1.049194 NaN 1528.972551 26.832875 139.834053 47.053809 1123.438076 191.813737
3 010040202 Tiret-Les Allymes 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 385.888110 37.225126 6.920884 NaN 2069.196949 47.754605 61.886062 46.099580 1575.388689 338.068012
4 01004ZZZZ Non Localisé À L'Iris 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

5 rows × 1031 columns


In [11]:
pd.set_option('display.max_columns', 30) # Changer le nombre de colonnnes afficher dans le notebook

In [16]:
insee.head()


Out[16]:
CODGEO LIBGEO COM LIBCOM REG DEP ARR CV ZE2010 UU2010 NB_B101 NB_B102 NB_B103 NB_B201 NB_B202 ... P12_NSAL15P_EMPLOY P12_NSAL15P_AIDFAM P12_ACTOCC15P_ILT1 P12_ACTOCC15P_ILT2P P12_ACTOCC15P_ILT2 P12_ACTOCC15P_ILT3 P12_ACTOCC15P_ILT4 P12_ACTOCC15P_ILT5 P12_ACTOCC15P_ILT45D C12_ACTOCC15P C12_ACTOCC15P_PAS C12_ACTOCC15P_MAR C12_ACTOCC15P_DROU C12_ACTOCC15P_VOIT C12_ACTOCC15P_TCOM
0 010040101 Les Perouses-Triangle D'Activite 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 0.0 2.0 3.0 1.0 1.0 ... 14.839853 0.000000 379.827854 342.532076 225.505232 112.198631 4.828213 0.000000 NaN 715.635129 75.289455 119.660483 21.756694 407.353725 91.574773
1 010040102 Longeray-Gare 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 0.0 2.0 0.0 0.0 2.0 ... 35.102346 5.079221 650.063733 828.476637 576.341703 251.078104 1.056829 0.000000 NaN 1478.540370 57.685313 168.621858 26.249674 1003.722497 222.261029
2 010040201 Centre-St Germain-Vareilles 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 0.0 0.0 0.0 0.0 1.0 ... 37.081294 1.049194 588.866660 951.155325 634.368542 303.454850 12.282740 1.049194 NaN 1528.972551 26.832875 139.834053 47.053809 1123.438076 191.813737
3 010040202 Tiret-Les Allymes 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 0.0 1.0 0.0 0.0 2.0 ... 121.758030 0.000000 769.804668 1285.933176 855.899057 385.888110 37.225126 6.920884 NaN 2069.196949 47.754605 61.886062 46.099580 1575.388689 338.068012
4 01004ZZZZ Non Localisé À L'Iris 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 0.0 0.0 0.0 0.0 0.0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

5 rows × 1031 columns

Jointure entre 2 fichiers :


In [10]:
data = insee.merge(commune_metropole, on='COM', how='left')

In [13]:
data.shape


Out[13]:
(51989, 1036)

In [14]:
data.head()


Out[14]:
CODGEO LIBGEO COM LIBCOM REG DEP ARR CV ZE2010 UU2010 ... C12_ACTOCC15P_PAS C12_ACTOCC15P_MAR C12_ACTOCC15P_DROU C12_ACTOCC15P_VOIT C12_ACTOCC15P_TCOM status mean_altitude superficie is_metropole metropole_name
0 010040101 Les Perouses-Triangle D'Activite 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 75.289455 119.660483 21.756694 407.353725 91.574773 Chef-lieu canton 379.0 2448.0 0.0 NaN
1 010040102 Longeray-Gare 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 57.685313 168.621858 26.249674 1003.722497 222.261029 Chef-lieu canton 379.0 2448.0 0.0 NaN
2 010040201 Centre-St Germain-Vareilles 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 26.832875 139.834053 47.053809 1123.438076 191.813737 Chef-lieu canton 379.0 2448.0 0.0 NaN
3 010040202 Tiret-Les Allymes 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 47.754605 61.886062 46.099580 1575.388689 338.068012 Chef-lieu canton 379.0 2448.0 0.0 NaN
4 01004ZZZZ Non Localisé À L'Iris 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... NaN NaN NaN NaN NaN Chef-lieu canton 379.0 2448.0 0.0 NaN

5 rows × 1036 columns

Il y a bien les colonnes "status", "mean_altitude", "superficie", "is_metropole" et "metropole_name"

Nombre de personnes qui utilisent la voiture pour aller travailler en métropole (pourcentage) :


In [15]:
# Clefs pour regrouper par ville 
key = ['CODGEO',
        'LIBGEO',
        'COM',
        'LIBCOM',
        'REG',
        'DEP',
        'ARR',
        'CV',
        'ZE2010',
        'UU2010',
        'TRIRIS',
        'REG2016',
        'status_rank']
#        'is_metropole']

In [18]:
# Autres valeurs 
features = [col for col in data.columns if col not in key]
# Nom des colonnes qui ne sont pas dans les colonnes de key

In [ ]:


In [24]:
# On cherche à regrouper nos données sur le nom de la métropole :
# On somme tous nos indicateurs
metropole_sum = data[features][data.is_metropole == 1].groupby('metropole_name').sum().reset_index()
metropole_sum.shape


Out[24]:
(11, 1019)

In [25]:
metropole_sum


Out[25]:
metropole_name NB_B101 NB_B102 NB_B103 NB_B201 NB_B202 NB_B203 NB_B204 NB_B205 NB_B206 ... P12_ACTOCC15P_ILT45D C12_ACTOCC15P C12_ACTOCC15P_PAS C12_ACTOCC15P_MAR C12_ACTOCC15P_DROU C12_ACTOCC15P_VOIT C12_ACTOCC15P_TCOM mean_altitude superficie is_metropole
0 Bordeaux 18.0 89.0 42.0 44.0 217.0 385.0 169.0 17.0 26.0 ... NaN 315398.253489 9154.443892 20158.046550 24129.383739 208231.699409 53724.679898 6815.0 969169.0 294.0
1 Brest 8.0 29.0 6.0 8.0 29.0 97.0 44.0 8.0 16.0 ... NaN 82987.131510 2507.613904 6320.578554 3367.858679 61279.056005 9512.024368 5792.0 412218.0 98.0
2 Grenoble 6.0 33.0 12.0 37.0 106.0 192.0 91.0 6.0 8.0 ... NaN 185680.285698 5479.800653 15946.430502 15593.498465 112178.102149 36482.453930 73562.0 272420.0 210.0
3 Lille 23.0 148.0 33.0 63.0 376.0 493.0 264.0 25.0 14.0 ... NaN 440833.385317 13747.865175 31634.209792 16058.100643 302423.675325 76969.534382 15476.0 832162.0 533.0
4 Montpellier 7.0 39.0 9.0 26.0 179.0 215.0 118.0 8.0 21.0 ... NaN 169548.999584 5459.065915 13383.140507 12424.520266 113863.952781 24418.320115 7873.0 624365.0 165.0
5 Nantes 15.0 61.0 31.0 18.0 96.0 280.0 109.0 15.0 26.0 ... NaN 259150.983693 8295.338284 15193.962942 15399.276632 168483.240321 51779.165514 5923.0 1026079.0 245.0
6 Nice 9.0 60.0 33.0 61.0 347.0 394.0 204.0 25.0 38.0 ... NaN 213206.375345 8674.074706 23632.334244 18373.040516 124067.371558 38459.554321 64199.0 1310251.0 242.0
7 Rennes 8.0 32.0 16.0 24.0 57.0 164.0 55.0 10.0 6.0 ... NaN 181441.426846 6178.023403 13400.290113 9872.994887 118397.871923 33592.246521 8232.0 656169.0 186.0
8 Rouen 7.0 50.0 10.0 20.0 131.0 218.0 118.0 9.0 12.0 ... NaN 191608.362343 5993.245483 16698.491789 5982.375395 133840.099577 29094.150099 15951.0 317920.0 258.0
9 Strasbourg 9.0 53.0 4.0 21.0 156.0 242.0 65.0 11.0 2.0 ... NaN 194571.481827 6138.438943 16222.621017 19879.830213 109387.756750 42942.834903 27742.0 989336.0 197.0
10 Toulouse 12.0 84.0 30.0 79.0 196.0 339.0 211.0 19.0 37.0 ... NaN 322210.059178 8568.720406 20934.029996 21972.689673 209807.637776 60926.981328 40037.0 1958347.0 262.0

11 rows × 1019 columns


In [26]:
voiture_colonnes = ['metropole_name' ,'C12_ACTOCC15P_VOIT', 'C11_ACTOCC15P_VOIT','P12_ACTOCC15P', 'P11_ACTOCC15P']

In [28]:
voiture = metropole_sum[voiture_colonnes].copy()
voiture


Out[28]:
metropole_name C12_ACTOCC15P_VOIT C11_ACTOCC15P_VOIT P12_ACTOCC15P P11_ACTOCC15P
0 Bordeaux 208231.699409 207506.371166 315256.899143 312371.688110
1 Brest 61279.056005 61762.076746 83156.388709 83282.064006
2 Grenoble 112178.102149 112880.782653 185738.532132 186029.971637
3 Lille 302423.675325 302677.703395 440485.598808 440017.331865
4 Montpellier 113863.952781 112637.282501 169943.126723 167496.348235
5 Nantes 168483.240321 167552.014965 259371.500676 256694.008786
6 Nice 124067.371558 125035.820113 213022.822499 213710.043704
7 Rennes 118397.871923 118196.572269 181838.467426 180302.002739
8 Rouen 133840.099577 136860.989128 191125.767932 194911.253285
9 Strasbourg 109387.756750 110145.294190 194552.345854 194813.085280
10 Toulouse 209807.637776 208920.689602 322379.008362 318497.417281

Il va falloir re-travailler la données pour pouvoir donner le pourcentage de personnes qui prenne la voiture en 2011 / 2012 ainsi qu'avoir la progression


In [29]:
voiture['pourcentage_car_11'] = (voiture["C11_ACTOCC15P_VOIT"] / voiture["P11_ACTOCC15P"])*100

In [30]:
voiture


Out[30]:
metropole_name C12_ACTOCC15P_VOIT C11_ACTOCC15P_VOIT P12_ACTOCC15P P11_ACTOCC15P pourcentage_car_11
0 Bordeaux 208231.699409 207506.371166 315256.899143 312371.688110 66.429315
1 Brest 61279.056005 61762.076746 83156.388709 83282.064006 74.160118
2 Grenoble 112178.102149 112880.782653 185738.532132 186029.971637 60.678815
3 Lille 302423.675325 302677.703395 440485.598808 440017.331865 68.787678
4 Montpellier 113863.952781 112637.282501 169943.126723 167496.348235 67.247605
5 Nantes 168483.240321 167552.014965 259371.500676 256694.008786 65.273052
6 Nice 124067.371558 125035.820113 213022.822499 213710.043704 58.507227
7 Rennes 118397.871923 118196.572269 181838.467426 180302.002739 65.554775
8 Rouen 133840.099577 136860.989128 191125.767932 194911.253285 70.217079
9 Strasbourg 109387.756750 110145.294190 194552.345854 194813.085280 56.538961
10 Toulouse 209807.637776 208920.689602 322379.008362 318497.417281 65.595725

In [31]:
voiture['pourcentage_car_12'] = (voiture["C12_ACTOCC15P_VOIT"] / voiture["P12_ACTOCC15P"])*100
voiture


Out[31]:
metropole_name C12_ACTOCC15P_VOIT C11_ACTOCC15P_VOIT P12_ACTOCC15P P11_ACTOCC15P pourcentage_car_11 pourcentage_car_12
0 Bordeaux 208231.699409 207506.371166 315256.899143 312371.688110 66.429315 66.051433
1 Brest 61279.056005 61762.076746 83156.388709 83282.064006 74.160118 73.691339
2 Grenoble 112178.102149 112880.782653 185738.532132 186029.971637 60.678815 60.395708
3 Lille 302423.675325 302677.703395 440485.598808 440017.331865 68.787678 68.656881
4 Montpellier 113863.952781 112637.282501 169943.126723 167496.348235 67.247605 67.001211
5 Nantes 168483.240321 167552.014965 259371.500676 256694.008786 65.273052 64.958270
6 Nice 124067.371558 125035.820113 213022.822499 213710.043704 58.507227 58.241352
7 Rennes 118397.871923 118196.572269 181838.467426 180302.002739 65.554775 65.111565
8 Rouen 133840.099577 136860.989128 191125.767932 194911.253285 70.217079 70.027240
9 Strasbourg 109387.756750 110145.294190 194552.345854 194813.085280 56.538961 56.225360
10 Toulouse 209807.637776 208920.689602 322379.008362 318497.417281 65.595725 65.081048

Calculer une augmentation :


In [34]:
def augmentation(depart, arrive):
    """
    Calcul de l'augmentation entre 2 valeurs :
    # ( ( valeur d'arrivée - valeur de départ ) / valeur de départ ) x 100
    """
    return ((arrive - depart) / depart) * 100

In [35]:
voiture['augmentation'] = augmentation(voiture['pourcentage_car_11'], voiture['pourcentage_car_12'])

In [36]:
# Les métropole qui utilise le moins la voiture pour aller travailler :
voiture.sort_values('augmentation')


Out[36]:
metropole_name C12_ACTOCC15P_VOIT C11_ACTOCC15P_VOIT P12_ACTOCC15P P11_ACTOCC15P pourcentage_car_11 pourcentage_car_12 augmentation
10 Toulouse 209807.637776 208920.689602 322379.008362 318497.417281 65.595725 65.081048 -0.784619
7 Rennes 118397.871923 118196.572269 181838.467426 180302.002739 65.554775 65.111565 -0.676091
1 Brest 61279.056005 61762.076746 83156.388709 83282.064006 74.160118 73.691339 -0.632118
0 Bordeaux 208231.699409 207506.371166 315256.899143 312371.688110 66.429315 66.051433 -0.568848
9 Strasbourg 109387.756750 110145.294190 194552.345854 194813.085280 56.538961 56.225360 -0.554664
5 Nantes 168483.240321 167552.014965 259371.500676 256694.008786 65.273052 64.958270 -0.482254
2 Grenoble 112178.102149 112880.782653 185738.532132 186029.971637 60.678815 60.395708 -0.466566
6 Nice 124067.371558 125035.820113 213022.822499 213710.043704 58.507227 58.241352 -0.454431
4 Montpellier 113863.952781 112637.282501 169943.126723 167496.348235 67.247605 67.001211 -0.366398
8 Rouen 133840.099577 136860.989128 191125.767932 194911.253285 70.217079 70.027240 -0.270361
3 Lille 302423.675325 302677.703395 440485.598808 440017.331865 68.787678 68.656881 -0.190145

Transport en commun en pourcentage :


In [37]:
transp_com_colonnes = ['metropole_name' , 'C11_ACTOCC15P_TCOM', 'C12_ACTOCC15P_TCOM','P12_ACTOCC15P', 'P11_ACTOCC15P']

In [38]:
transp_com = metropole_sum[transp_com_colonnes].copy()
transp_com


Out[38]:
metropole_name C11_ACTOCC15P_TCOM C12_ACTOCC15P_TCOM P12_ACTOCC15P P11_ACTOCC15P
0 Bordeaux 52335.460630 53724.679898 315256.899143 312371.688110
1 Brest 9274.863519 9512.024368 83156.388709 83282.064006
2 Grenoble 36544.785029 36482.453930 185738.532132 186029.971637
3 Lille 75632.953278 76969.534382 440485.598808 440017.331865
4 Montpellier 23380.301333 24418.320115 169943.126723 167496.348235
5 Nantes 51097.255541 51779.165514 259371.500676 256694.008786
6 Nice 37629.560450 38459.554321 213022.822499 213710.043704
7 Rennes 32958.353317 33592.246521 181838.467426 180302.002739
8 Rouen 29055.207775 29094.150099 191125.767932 194911.253285
9 Strasbourg 42245.427933 42942.834903 194552.345854 194813.085280
10 Toulouse 58721.165631 60926.981328 322379.008362 318497.417281

In [39]:
transp_com['pourcentage_trans_com_12'] = (transp_com["C12_ACTOCC15P_TCOM"] / transp_com["P12_ACTOCC15P"])*100
transp_com


Out[39]:
metropole_name C11_ACTOCC15P_TCOM C12_ACTOCC15P_TCOM P12_ACTOCC15P P11_ACTOCC15P pourcentage_trans_com_12
0 Bordeaux 52335.460630 53724.679898 315256.899143 312371.688110 17.041556
1 Brest 9274.863519 9512.024368 83156.388709 83282.064006 11.438717
2 Grenoble 36544.785029 36482.453930 185738.532132 186029.971637 19.641834
3 Lille 75632.953278 76969.534382 440485.598808 440017.331865 17.473791
4 Montpellier 23380.301333 24418.320115 169943.126723 167496.348235 14.368525
5 Nantes 51097.255541 51779.165514 259371.500676 256694.008786 19.963321
6 Nice 37629.560450 38459.554321 213022.822499 213710.043704 18.054194
7 Rennes 32958.353317 33592.246521 181838.467426 180302.002739 18.473674
8 Rouen 29055.207775 29094.150099 191125.767932 194911.253285 15.222516
9 Strasbourg 42245.427933 42942.834903 194552.345854 194813.085280 22.072638
10 Toulouse 58721.165631 60926.981328 322379.008362 318497.417281 18.899178

In [40]:
transp_com['pourcentage_trans_com_11'] = (transp_com["C11_ACTOCC15P_TCOM"] / transp_com["P11_ACTOCC15P"])*100
transp_com


Out[40]:
metropole_name C11_ACTOCC15P_TCOM C12_ACTOCC15P_TCOM P12_ACTOCC15P P11_ACTOCC15P pourcentage_trans_com_12 pourcentage_trans_com_11
0 Bordeaux 52335.460630 53724.679898 315256.899143 312371.688110 17.041556 16.754227
1 Brest 9274.863519 9512.024368 83156.388709 83282.064006 11.438717 11.136688
2 Grenoble 36544.785029 36482.453930 185738.532132 186029.971637 19.641834 19.644568
3 Lille 75632.953278 76969.534382 440485.598808 440017.331865 17.473791 17.188630
4 Montpellier 23380.301333 24418.320115 169943.126723 167496.348235 14.368525 13.958693
5 Nantes 51097.255541 51779.165514 259371.500676 256694.008786 19.963321 19.905901
6 Nice 37629.560450 38459.554321 213022.822499 213710.043704 18.054194 17.607764
7 Rennes 32958.353317 33592.246521 181838.467426 180302.002739 18.473674 18.279527
8 Rouen 29055.207775 29094.150099 191125.767932 194911.253285 15.222516 14.906891
9 Strasbourg 42245.427933 42942.834903 194552.345854 194813.085280 22.072638 21.685108
10 Toulouse 58721.165631 60926.981328 322379.008362 318497.417281 18.899178 18.436936

In [41]:
transp_com['augmentation'] = augmentation(transp_com['pourcentage_trans_com_11'], transp_com['pourcentage_trans_com_12'])

In [43]:
transp_com.sort_values('augmentation')


Out[43]:
metropole_name C11_ACTOCC15P_TCOM C12_ACTOCC15P_TCOM P12_ACTOCC15P P11_ACTOCC15P pourcentage_trans_com_12 pourcentage_trans_com_11 augmentation
2 Grenoble 36544.785029 36482.453930 185738.532132 186029.971637 19.641834 19.644568 -0.013920
5 Nantes 51097.255541 51779.165514 259371.500676 256694.008786 19.963321 19.905901 0.288457
7 Rennes 32958.353317 33592.246521 181838.467426 180302.002739 18.473674 18.279527 1.062103
3 Lille 75632.953278 76969.534382 440485.598808 440017.331865 17.473791 17.188630 1.659008
0 Bordeaux 52335.460630 53724.679898 315256.899143 312371.688110 17.041556 16.754227 1.714964
9 Strasbourg 42245.427933 42942.834903 194552.345854 194813.085280 22.072638 21.685108 1.787079
8 Rouen 29055.207775 29094.150099 191125.767932 194911.253285 15.222516 14.906891 2.117309
10 Toulouse 58721.165631 60926.981328 322379.008362 318497.417281 18.899178 18.436936 2.507149
6 Nice 37629.560450 38459.554321 213022.822499 213710.043704 18.054194 17.607764 2.535417
1 Brest 9274.863519 9512.024368 83156.388709 83282.064006 11.438717 11.136688 2.712024
4 Montpellier 23380.301333 24418.320115 169943.126723 167496.348235 14.368525 13.958693 2.936031

Transport vélo :


In [49]:
transp_velo_colonnes = ['metropole_name' , 'C11_ACTOCC15P_DROU', 'C12_ACTOCC15P_DROU','P12_ACTOCC15P', 'P11_ACTOCC15P']

In [50]:
transp_velo = metropole_sum[transp_com_colonnes].copy()
transp_velo


Out[50]:
metropole_name C11_ACTOCC15P_TCOM C12_ACTOCC15P_TCOM P12_ACTOCC15P P11_ACTOCC15P
0 Bordeaux 52335.460630 53724.679898 315256.899143 312371.688110
1 Brest 9274.863519 9512.024368 83156.388709 83282.064006
2 Grenoble 36544.785029 36482.453930 185738.532132 186029.971637
3 Lille 75632.953278 76969.534382 440485.598808 440017.331865
4 Montpellier 23380.301333 24418.320115 169943.126723 167496.348235
5 Nantes 51097.255541 51779.165514 259371.500676 256694.008786
6 Nice 37629.560450 38459.554321 213022.822499 213710.043704
7 Rennes 32958.353317 33592.246521 181838.467426 180302.002739
8 Rouen 29055.207775 29094.150099 191125.767932 194911.253285
9 Strasbourg 42245.427933 42942.834903 194552.345854 194813.085280
10 Toulouse 58721.165631 60926.981328 322379.008362 318497.417281

In [53]:
transp_velo['pourcentage_trans_com_12'] = (transp_velo["C12_ACTOCC15P_TCOM"] / transp_velo["P12_ACTOCC15P"])*100
transp_velo


Out[53]:
metropole_name C11_ACTOCC15P_TCOM C12_ACTOCC15P_TCOM P12_ACTOCC15P P11_ACTOCC15P pourcentage_trans_com_12
0 Bordeaux 52335.460630 53724.679898 315256.899143 312371.688110 17.041556
1 Brest 9274.863519 9512.024368 83156.388709 83282.064006 11.438717
2 Grenoble 36544.785029 36482.453930 185738.532132 186029.971637 19.641834
3 Lille 75632.953278 76969.534382 440485.598808 440017.331865 17.473791
4 Montpellier 23380.301333 24418.320115 169943.126723 167496.348235 14.368525
5 Nantes 51097.255541 51779.165514 259371.500676 256694.008786 19.963321
6 Nice 37629.560450 38459.554321 213022.822499 213710.043704 18.054194
7 Rennes 32958.353317 33592.246521 181838.467426 180302.002739 18.473674
8 Rouen 29055.207775 29094.150099 191125.767932 194911.253285 15.222516
9 Strasbourg 42245.427933 42942.834903 194552.345854 194813.085280 22.072638
10 Toulouse 58721.165631 60926.981328 322379.008362 318497.417281 18.899178

In [54]:
transp_velo['pourcentage_trans_com_11'] = (transp_velo["C11_ACTOCC15P_TCOM"] / transp_velo["P11_ACTOCC15P"])*100
transp_velo


Out[54]:
metropole_name C11_ACTOCC15P_TCOM C12_ACTOCC15P_TCOM P12_ACTOCC15P P11_ACTOCC15P pourcentage_trans_com_12 pourcentage_trans_com_11
0 Bordeaux 52335.460630 53724.679898 315256.899143 312371.688110 17.041556 16.754227
1 Brest 9274.863519 9512.024368 83156.388709 83282.064006 11.438717 11.136688
2 Grenoble 36544.785029 36482.453930 185738.532132 186029.971637 19.641834 19.644568
3 Lille 75632.953278 76969.534382 440485.598808 440017.331865 17.473791 17.188630
4 Montpellier 23380.301333 24418.320115 169943.126723 167496.348235 14.368525 13.958693
5 Nantes 51097.255541 51779.165514 259371.500676 256694.008786 19.963321 19.905901
6 Nice 37629.560450 38459.554321 213022.822499 213710.043704 18.054194 17.607764
7 Rennes 32958.353317 33592.246521 181838.467426 180302.002739 18.473674 18.279527
8 Rouen 29055.207775 29094.150099 191125.767932 194911.253285 15.222516 14.906891
9 Strasbourg 42245.427933 42942.834903 194552.345854 194813.085280 22.072638 21.685108
10 Toulouse 58721.165631 60926.981328 322379.008362 318497.417281 18.899178 18.436936

Célib : Age / Uniquement à Bordeaux par Quartier :


In [44]:
data.head()


Out[44]:
CODGEO LIBGEO COM LIBCOM REG DEP ARR CV ZE2010 UU2010 ... C12_ACTOCC15P_PAS C12_ACTOCC15P_MAR C12_ACTOCC15P_DROU C12_ACTOCC15P_VOIT C12_ACTOCC15P_TCOM status mean_altitude superficie is_metropole metropole_name
0 010040101 Les Perouses-Triangle D'Activite 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 75.289455 119.660483 21.756694 407.353725 91.574773 Chef-lieu canton 379.0 2448.0 0.0 NaN
1 010040102 Longeray-Gare 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 57.685313 168.621858 26.249674 1003.722497 222.261029 Chef-lieu canton 379.0 2448.0 0.0 NaN
2 010040201 Centre-St Germain-Vareilles 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 26.832875 139.834053 47.053809 1123.438076 191.813737 Chef-lieu canton 379.0 2448.0 0.0 NaN
3 010040202 Tiret-Les Allymes 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... 47.754605 61.886062 46.099580 1575.388689 338.068012 Chef-lieu canton 379.0 2448.0 0.0 NaN
4 01004ZZZZ Non Localisé À L'Iris 01004 Ambérieu-en-Bugey 82 1 11 101 8201.0 1302 ... NaN NaN NaN NaN NaN Chef-lieu canton 379.0 2448.0 0.0 NaN

5 rows × 1036 columns


In [45]:
bdx = data[data.LIBCOM == "Bordeaux"]

In [87]:
bdx


Out[87]:
CODGEO LIBGEO COM LIBCOM REG DEP ARR CV ZE2010 UU2010 NB_B101 NB_B102 NB_B103 NB_B201 NB_B202 ... P12_ACTOCC15P_ILT3 P12_ACTOCC15P_ILT4 P12_ACTOCC15P_ILT5 P12_ACTOCC15P_ILT45D C12_ACTOCC15P C12_ACTOCC15P_PAS C12_ACTOCC15P_MAR C12_ACTOCC15P_DROU C12_ACTOCC15P_VOIT C12_ACTOCC15P_TCOM status mean_altitude superficie is_metropole metropole_name
2987 330630101 Le Lac 1 33063 Bordeaux 72 33 332 3399 7204.0 33701 1.0 1.0 1.0 0.0 1.0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Préfecture de région 9.0 4970.0 1.0 Bordeaux
2988 330630103 Le Lac 3 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 1.0 1.0 ... 0.984268 16.826016 0.000000 NaN 1075.782731 32.635032 84.254284 56.517603 482.873435 419.502376 Préfecture de région 9.0 4970.0 1.0 Bordeaux
2989 330630201 Bacalan 1 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 1.0 0.0 3.0 ... 0.000000 16.485367 0.000000 NaN 527.428927 20.733607 61.799049 23.556735 297.530070 123.809466 Préfecture de région 9.0 4970.0 1.0 Bordeaux
2990 330630202 Bacalan 2 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 0.0 ... 0.000000 11.039434 0.000000 NaN 1068.936042 58.280446 38.807450 88.446137 633.401373 250.000636 Préfecture de région 9.0 4970.0 1.0 Bordeaux
2991 330630203 Bacalan 3 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 1.0 ... 0.000000 5.466127 3.211711 NaN 910.818388 24.660676 66.252502 53.412298 554.086179 212.406733 Préfecture de région 9.0 4970.0 1.0 Bordeaux
2992 330630204 Bacalan 4 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 0.0 ... 0.000000 4.751087 0.000000 NaN 575.439318 16.314981 17.252895 38.478811 307.787403 195.605227 Préfecture de région 9.0 4970.0 1.0 Bordeaux
2993 330630301 Chartrons-Grand-Parc 1 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 0.0 2.0 ... 7.065795 51.641779 3.041529 NaN 2168.974828 57.568895 223.342810 203.938225 971.625756 712.499142 Préfecture de région 9.0 4970.0 1.0 Bordeaux
2994 330630302 Chartrons-Grand-Parc 2 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 1.0 1.0 ... 12.915476 52.107202 0.000000 NaN 1745.051678 24.866154 222.667423 246.271102 735.280705 515.966295 Préfecture de région 9.0 4970.0 1.0 Bordeaux
2995 330630303 Chartrons-Grand-Parc 3 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 2.0 0.0 0.0 0.0 ... 1.101075 22.283622 1.101075 NaN 1464.620127 55.014838 160.289309 112.744223 684.108292 452.463465 Préfecture de région 9.0 4970.0 1.0 Bordeaux
2996 330630305 Chartrons-Grand-Parc 5 33063 Bordeaux 72 33 332 3399 7204.0 33701 1.0 0.0 0.0 0.0 1.0 ... 7.969752 5.902744 2.948031 NaN 1200.363306 37.333653 164.216779 65.196631 539.849989 393.766254 Préfecture de région 9.0 4970.0 1.0 Bordeaux
2997 330630306 Chartrons-Grand-Parc 6 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 0.0 0.0 ... 0.000000 2.899867 0.000000 NaN 913.484031 35.647605 127.023188 88.056634 500.258063 162.498541 Préfecture de région 9.0 4970.0 1.0 Bordeaux
2998 330630307 Chartrons-Grand-Parc 7 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 1.0 ... 9.755280 19.818507 6.503520 NaN 1183.044495 18.248191 121.125200 106.735672 613.280478 323.654954 Préfecture de région 9.0 4970.0 1.0 Bordeaux
2999 330630308 Chartrons-Grand-Parc 8 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 0.0 ... 9.035349 15.942717 0.000000 NaN 685.198690 23.723276 72.298559 81.896087 359.265702 148.015065 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3000 330630309 Chartrons-Grand-Parc 9 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 2.0 ... 12.739243 22.247174 3.215893 NaN 1156.226743 34.894862 212.571336 190.018457 445.325919 273.416169 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3001 330630310 Chartrons-Grand-Parc 10 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 1.0 1.0 ... 6.232375 37.957532 0.000000 NaN 1211.365059 42.107124 126.216622 173.854253 575.584565 293.602494 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3002 330630311 Chartrons-Grand-Parc 11 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 4.0 2.0 ... 12.491915 21.793786 0.000000 NaN 1166.244612 65.821396 161.629323 180.632615 396.752553 361.408724 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3003 330630312 Chartrons-Grand Parc 12 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 0.0 0.0 ... 14.645985 31.062753 3.343597 NaN 1306.995133 27.800255 107.555695 193.645295 642.742251 335.251636 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3004 330630313 Chartrons-Grand Parc 13 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 0.0 ... 22.101178 54.088972 0.000000 NaN 1853.608843 43.710530 116.984719 191.520634 1009.922135 491.470826 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3005 330630401 La Bastide 1 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 0.0 0.0 ... 18.533762 68.277834 3.657013 NaN 1911.360637 73.016892 106.249643 230.115104 872.431956 629.547042 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3006 330630402 La Bastide 2 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 1.0 ... 10.256919 8.975522 3.104032 NaN 1103.280123 26.937928 60.484248 124.671476 573.319275 317.867195 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3007 330630403 La Bastide 3 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 2.0 0.0 0.0 2.0 ... 18.303813 39.590150 0.000000 NaN 1588.394445 34.553206 28.019609 165.844142 825.408778 534.568710 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3008 330630404 La Bastide 4 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 0.0 0.0 ... 0.000000 9.840782 0.000000 NaN 795.757196 10.107983 68.623730 72.958614 334.055838 310.011031 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3009 330630405 La Bastide 5 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 3.0 ... 5.843029 32.602542 0.000000 NaN 1335.130087 53.025190 88.921292 153.568120 636.099689 403.515796 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3010 330630501 Hotel De Ville-Quinconces 1 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 4.0 ... 6.117833 38.975941 0.000000 NaN 1280.959314 62.693700 310.775977 152.256072 256.582653 498.650911 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3011 330630502 Hotel De Ville-Quinconces 2 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 1.0 1.0 13.0 ... 5.289589 59.410405 0.000000 NaN 1834.708522 35.152362 408.815038 190.114666 428.385623 772.240833 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3012 330630503 Hotel De Ville-Quinconces 3 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 0.0 4.0 ... 4.159456 48.128560 3.307361 NaN 970.486906 71.836300 222.905547 75.650671 222.855616 377.238771 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3013 330630504 Hotel De Ville-Quinconces 4 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 1.0 3.0 ... 9.080909 12.276097 0.000000 NaN 954.897656 45.660619 288.201101 108.705186 203.817217 308.513532 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3014 330630505 Hotel De Ville-Quinconces 5 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 0.0 3.0 ... 6.515722 21.936912 0.000000 NaN 1215.499062 57.465649 344.467969 186.407474 213.604120 413.553850 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3015 330630506 Hotel De Ville-Quinconces 6 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 5.0 ... 6.126279 37.188614 6.066931 NaN 1339.513193 45.508785 338.377043 134.888601 489.925847 330.812917 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3016 330630507 Hotel De Ville-Quinconces 7 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 2.0 0.0 0.0 0.0 ... 11.498874 30.365472 0.000000 NaN 1142.765392 121.388226 230.262378 57.513383 444.870716 288.730689 Préfecture de région 9.0 4970.0 1.0 Bordeaux
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3046 330630905 Saint-Augustin 5 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 0.0 ... 9.834463 31.825869 0.000000 NaN 1333.808940 34.517602 167.004370 164.450440 759.723742 208.112785 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3047 330631001 Saint-Bruno-Saint-Victor 1 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 1.0 ... 8.774589 38.351014 0.000000 NaN 1621.589036 62.149812 317.399223 235.992480 670.675434 335.372087 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3048 330631002 Saint-Bruno-Saint-Victor 2 33063 Bordeaux 72 33 332 3399 7204.0 33701 1.0 0.0 0.0 0.0 0.0 ... 7.614239 11.947477 3.185863 NaN 574.301653 21.736033 182.901757 61.244664 165.558510 142.860690 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3049 330631003 Saint-Bruno-Saint-Victor 3 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 2.0 2.0 ... 10.851299 59.466062 0.000000 NaN 1677.827491 32.964916 292.204256 224.304457 652.943680 475.410182 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3050 330631004 Saint-Bruno-Saint-Victor 4 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 1.0 2.0 ... 26.580402 70.176332 9.428806 NaN 2093.742706 56.546818 372.184315 304.188181 813.155456 547.667936 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3051 330631005 Saint-Bruno-Saint-Victor 5 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 1.0 ... 19.979224 37.214197 4.305358 NaN 1234.006170 68.276754 278.208296 123.719938 408.049540 355.751643 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3052 330631006 Saint-Bruno-Saint-Victor 6 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 0.0 ... 24.103348 24.093710 0.000000 NaN 1132.835895 33.746832 159.212106 206.283033 519.595931 213.997993 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3053 330631101 Capucins-Victoire 1 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 5.0 ... 13.055004 30.444882 0.000000 NaN 1238.274859 19.316257 182.871849 191.707413 307.973693 536.405647 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3054 330631102 Capucins-Victoire 2 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 1.0 2.0 ... 14.085393 10.795935 0.000000 NaN 1021.121984 45.695199 270.408203 104.823927 243.149956 357.044698 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3055 330631103 Capucins-Victoire 3 33063 Bordeaux 72 33 332 3399 7204.0 33701 1.0 1.0 0.0 0.0 5.0 ... 22.900442 25.025038 3.184751 NaN 912.913989 46.267560 240.260854 80.295632 188.108030 357.981913 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3056 330631104 Capucins-Victoire 4 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 1.0 14.0 ... 10.434807 56.895497 6.326180 NaN 1300.421109 23.035512 246.156865 160.796539 349.799836 520.632357 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3057 330631105 Capucins-Victoire 5 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 0.0 6.0 ... 15.122340 19.761601 3.431785 NaN 950.699696 40.266946 125.484965 165.133497 263.687905 356.126383 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3058 330631106 Capucins-Victoire 6 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 1.0 0.0 9.0 ... 10.376491 58.028106 0.982262 NaN 1135.081237 48.374059 204.165659 141.333822 333.701359 407.506338 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3059 330631107 Capucins-Victoire 7 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 1.0 3.0 ... 2.916737 24.344799 0.000000 NaN 859.822128 17.485069 134.320231 145.396212 193.411566 369.209050 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3060 330631108 Capucins-Victoire 8 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 1.0 15.0 ... 3.029802 21.810140 0.000000 NaN 835.614894 26.023990 129.642297 69.941673 263.886355 346.120578 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3061 330631201 Nansouty 1 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 3.0 ... 17.334859 32.298526 2.814470 NaN 1278.117824 48.750480 197.873220 177.289815 518.552063 335.652246 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3062 330631202 Nansouty 2 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 0.0 ... 11.014459 41.804828 3.641776 NaN 1156.802074 68.546489 138.538846 199.036354 502.971180 247.709206 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3063 330631203 Nansouty 3 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 1.0 2.0 ... 3.302762 49.098562 0.000000 NaN 1061.321942 13.913825 61.780501 131.931862 520.837991 332.857763 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3064 330631204 Nansouty 4 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 0.0 1.0 ... 1.080848 32.181240 4.536238 NaN 1221.672788 16.152455 112.219006 179.018555 539.553256 374.729516 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3065 330631205 Nansouty 5 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 1.0 ... 7.090952 29.348485 0.000000 NaN 1053.417020 32.702018 75.612038 123.975689 460.324685 360.802590 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3066 330631206 Nansouty 6 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 0.0 ... 0.000000 7.317065 3.278899 NaN 931.665994 56.881280 65.107630 172.913335 436.265106 200.498643 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3067 330631207 Nansouty 7 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 2.0 ... 7.537769 25.779011 0.000000 NaN 962.411552 54.559630 117.239476 167.025878 419.697545 203.889023 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3068 330631208 Nansouty 8 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 0.0 1.0 ... 15.520073 24.583560 0.000000 NaN 1143.434128 34.462169 58.201376 198.697628 639.646106 212.426849 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3069 330631209 Nansouty 9 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 0.0 1.0 ... 15.512962 17.387046 0.000000 NaN 1062.396650 44.126184 122.409764 185.150063 436.303078 274.407561 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3070 330631301 Gare Saint-Jean 1 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 0.0 ... 6.141192 19.890974 0.000000 NaN 1064.553847 25.653647 69.355939 149.815893 475.876393 343.851975 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3071 330631302 Gare Saint-Jean 2 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 0.0 ... 16.957075 19.723478 0.000000 NaN 1093.132181 12.764667 109.843409 205.568621 564.924254 200.031230 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3072 330631303 Gare Saint-Jean 3 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 0.0 ... 4.711913 13.212117 0.000000 NaN 880.244959 29.092326 38.630424 70.925674 421.378980 320.217554 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3073 330631304 Gare Saint-Jean 4 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 3.0 0.0 2.0 4.0 ... 26.595657 27.750920 0.000000 NaN 1324.463090 45.930591 183.394021 113.663298 462.336551 519.138631 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3074 330631305 Gare Saint-Jean 5 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 0.0 0.0 0.0 1.0 ... 9.347643 14.578850 3.098782 NaN 1010.770736 42.806486 101.040981 179.421500 435.121648 252.380121 Préfecture de région 9.0 4970.0 1.0 Bordeaux
3075 33063ZZZZ Non Localisé À L'Iris 33063 Bordeaux 72 33 332 3399 7204.0 33701 0.0 1.0 0.0 1.0 1.0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Préfecture de région 9.0 4970.0 1.0 Bordeaux

89 rows × 1036 columns


In [88]:
bdx.LIBGEO.unique()


Out[88]:
array([u'Le Lac 1', u'Le Lac 3', u'Bacalan 1', u'Bacalan 2', u'Bacalan 3',
       u'Bacalan 4', u'Chartrons-Grand-Parc 1', u'Chartrons-Grand-Parc 2',
       u'Chartrons-Grand-Parc 3', u'Chartrons-Grand-Parc 5',
       u'Chartrons-Grand-Parc 6', u'Chartrons-Grand-Parc 7',
       u'Chartrons-Grand-Parc 8', u'Chartrons-Grand-Parc 9',
       u'Chartrons-Grand-Parc 10', u'Chartrons-Grand-Parc 11',
       u'Chartrons-Grand Parc 12', u'Chartrons-Grand Parc 13',
       u'La Bastide 1', u'La Bastide 2', u'La Bastide 3', u'La Bastide 4',
       u'La Bastide 5', u'Hotel De Ville-Quinconces 1',
       u'Hotel De Ville-Quinconces 2', u'Hotel De Ville-Quinconces 3',
       u'Hotel De Ville-Quinconces 4', u'Hotel De Ville-Quinconces 5',
       u'Hotel De Ville-Quinconces 6', u'Hotel De Ville-Quinconces 7',
       u'Hotel De Ville-Quinconces 8', u'Saint-Seurin-Fondaudege 1',
       u'Saint-Seurin-Fondaudege 2', u'Saint-Seurin-Fondaudege 3',
       u'Saint-Seurin-Fondaudege 4', u'Saint-Seurin-Fondaudege 5',
       u'Saint-Seurin-Fondaudege 6', u'Saint-Seurin-Fondaudege 7',
       u'Saint-Seurin-Fondaudege 8', u'Saint-Seurin-Fondaudege 9',
       u'Villa Primerose Parc Bor.-Cauderan 1',
       u'Villa Primerose Parc Bor.-Cauderan 2',
       u'Villa Primerose Parc Bor.-Cauderan 3',
       u'Villa Primerose Parc Bor.-Cauderan 4',
       u'Villa Primerose Parc Bor.-Cauderan 5',
       u'Villa Primerose Parc Bor.-Cauderan 6', u'Lestonat-Monsejour 1',
       u'Lestonat-Monsejour 2', u'Lestonat-Monsejour 3',
       u'Lestonat-Monsejour 4', u'Lestonat-Monsejour 5',
       u'Lestonat-Monsejour 6', u'Lestonat-Monsejour 7',
       u'Lestonat-Monsejour 8', u'Lestonat-Monsejour 9',
       u'Saint-Augustin 1', u'Saint-Augustin 2', u'Saint-Augustin 3',
       u'Saint-Augustin 4', u'Saint-Augustin 5',
       u'Saint-Bruno-Saint-Victor 1', u'Saint-Bruno-Saint-Victor 2',
       u'Saint-Bruno-Saint-Victor 3', u'Saint-Bruno-Saint-Victor 4',
       u'Saint-Bruno-Saint-Victor 5', u'Saint-Bruno-Saint-Victor 6',
       u'Capucins-Victoire 1', u'Capucins-Victoire 2',
       u'Capucins-Victoire 3', u'Capucins-Victoire 4',
       u'Capucins-Victoire 5', u'Capucins-Victoire 6',
       u'Capucins-Victoire 7', u'Capucins-Victoire 8', u'Nansouty 1',
       u'Nansouty 2', u'Nansouty 3', u'Nansouty 4', u'Nansouty 5',
       u'Nansouty 6', u'Nansouty 7', u'Nansouty 8', u'Nansouty 9',
       u'Gare Saint-Jean 1', u'Gare Saint-Jean 2', u'Gare Saint-Jean 3',
       u'Gare Saint-Jean 4', u'Gare Saint-Jean 5',
       u"Non Localis\xe9 \xc0 L'Iris"], dtype=object)

In [48]:
bdx[bdx.LIBGEO.str.contains("Cauderan")][['P11_POP15P_CELIB', 'P12_POP15P_CELIB', 'P12_F1529', 'P12_H1529']].sum()


Out[48]:
P11_POP15P_CELIB    5886.463042
P12_POP15P_CELIB    5868.660327
P12_F1529           1521.839555
P12_H1529           1497.865838
dtype: float64

In [47]:
bdx[bdx.LIBGEO.str.contains("Chartron")][['P11_POP15P_CELIB', 'P12_POP15P_CELIB', 'P12_F1529', 'P12_H1529']].sum()


Out[47]:
P11_POP15P_CELIB    16376.767589
P12_POP15P_CELIB    16648.790570
P12_F1529            4944.671688
P12_H1529            4530.768996
dtype: float64

In [93]:
commune_metropole.head()


Out[93]:
COM status mean_altitude superficie is_metropole metropole_name
0 39007 Commune simple 587.0 582.0 0 NaN
1 88086 Commune simple 454.0 396.0 0 NaN
2 62627 Commune simple 49.0 426.0 0 NaN
3 14020 Commune simple 33.0 987.0 0 NaN
4 11091 Chef-lieu canton 455.0 1605.0 0 NaN

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]: