In [1]:
##### This is a tutorial on Pandas under Python 2.7 #####
##### updated 07.28.2017 #####
import sys
print sys.version
In [2]:
import platform
print platform.python_version()
In [4]:
import pandas as pd
print pd.__version__
In [9]:
## Let's start!
# Q1. How to create a pandas data frame?
#example 1: from Python dict
math_class_result = {}
math_class_result['Name'] = ['aaa', 'bbb', 'ccc']
math_class_result['ID'] = [1, 2, 3]
math_class_result['Score'] = [90, 85, 100]
print math_class_result
In [10]:
# Convert dict to pandas data frame
math_class_result_df = pd.DataFrame.from_dict(math_class_result)
print math_class_result_df
In [11]:
# set column ID as index
math_class_result_df = math_class_result_df.set_index('ID')
print math_class_result_df
In [12]:
# add a new column "age"
math_class_result_df['Age'] = 16
print math_class_result_df
In [13]:
# change column "score" to "math score"
math_class_result_df = math_class_result_df.rename(columns={'Score': 'Math score'})
print math_class_result_df
In [15]:
# sort record by math score
math_class_result_df = math_class_result_df.sort_values(['Math score'], ascending=[1])
print math_class_result_df
In [18]:
# Let's create a bar plot!
import matplotlib.pyplot as plt
math_class_result_df['Math score'].plot(kind = 'bar')
plt.show()
In [19]:
# don't like the plot style? Let's solve it!
plt.style.use('ggplot')
math_class_result_df['Math score'].plot(kind = 'bar')
plt.show()
In [23]:
# Add some features for our plot
math_class_result_df['Math score'].plot(kind = 'bar')
plt.xlabel('ID')
plt.ylabel('Math score')
plt.title('Math exam result')
plt.xticks(rotation=0)
plt.show()
In [ ]: