Series

The first main data type we will learn about for pandas is the Series data type. Let's import Pandas and explore the Series object.

A Series is very similar to a NumPy array (in fact it is built on top of the NumPy array object). What differentiates the NumPy array from a Series, is that a Series can have axis labels, meaning it can be indexed by a label, instead of just a number location. It also doesn't need to hold numeric data, it can hold any arbitrary Python Object.

Let's explore this concept through some examples:


In [1]:
import numpy as np
import pandas as pd

Creating a Series

You can convert a list,numpy array, or dictionary to a Series:


In [2]:
labels = ['a', 'b', 'c']
my_list = [10, 20, 30]
arr = np.array([10, 20, 30])
d = {'a': 10,'b': 20,'c': 30}

Using Lists


In [3]:
pd.Series(data = my_list)


Out[3]:
0    10
1    20
2    30
dtype: int64

In [4]:
pd.Series(data = my_list,
          index = labels)


Out[4]:
a    10
b    20
c    30
dtype: int64

In [5]:
pd.Series(my_list, labels)


Out[5]:
a    10
b    20
c    30
dtype: int64

NumPy Arrays


In [6]:
pd.Series(arr)


Out[6]:
0    10
1    20
2    30
dtype: int32

In [7]:
pd.Series(arr, labels)


Out[7]:
a    10
b    20
c    30
dtype: int32

Dictionary


In [8]:
pd.Series(d)


Out[8]:
a    10
b    20
c    30
dtype: int64

Data in a Series

A pandas Series can hold a variety of object types:


In [9]:
pd.Series(data = labels)


Out[9]:
0    a
1    b
2    c
dtype: object

In [10]:
# Even functions (although unlikely that you will use this)
pd.Series([sum, print, len])


Out[10]:
0      <built-in function sum>
1    <built-in function print>
2      <built-in function len>
dtype: object

Using an Index

The key to using a Series is understanding its index. Pandas makes use of these index names or numbers by allowing for fast look ups of information (works like a hash table or dictionary).

Let's see some examples of how to grab information from a Series. Let us create two sereis, ser1 and ser2:


In [11]:
ser1 = pd.Series([1, 2, 3, 4], 
                 index = ['USA', 'Germany', 'USSR', 'Japan'])

In [12]:
ser1


Out[12]:
USA        1
Germany    2
USSR       3
Japan      4
dtype: int64

In [13]:
ser2 = pd.Series([1, 2, 5, 4], 
                 index = ['USA', 'Germany', 'Italy', 'Japan'])

In [14]:
ser2


Out[14]:
USA        1
Germany    2
Italy      5
Japan      4
dtype: int64

In [15]:
ser1['USA']


Out[15]:
1

Operations are then also done based off of index:


In [16]:
ser1 + ser2


Out[16]:
Germany    4.0
Italy      NaN
Japan      8.0
USA        2.0
USSR       NaN
dtype: float64

Let's stop here for now and move on to DataFrames, which will expand on the concept of Series!

Great Job!