Iter: 10, train loss: 2.5907, train acc: 0.0312, valid loss: 2.5715, valid acc: 0.0992
Iter: 20, train loss: 2.5493, train acc: 0.1250, valid loss: 2.5652, valid acc: 0.1038
Iter: 30, train loss: 2.5430, train acc: 0.1094, valid loss: 2.5586, valid acc: 0.1100
Iter: 40, train loss: 2.5706, train acc: 0.0469, valid loss: 2.5518, valid acc: 0.1231
Iter: 50, train loss: 2.5442, train acc: 0.1719, valid loss: 2.5458, valid acc: 0.1254
Iter: 60, train loss: 2.5603, train acc: 0.0781, valid loss: 2.5399, valid acc: 0.1277
Iter: 70, train loss: 2.5106, train acc: 0.1250, valid loss: 2.5337, valid acc: 0.1346
Iter: 80, train loss: 2.5196, train acc: 0.1562, valid loss: 2.5280, valid acc: 0.1331
Iter: 90, train loss: 2.5141, train acc: 0.1094, valid loss: 2.5220, valid acc: 0.1408
Iter: 100, train loss: 2.5078, train acc: 0.2188, valid loss: 2.5161, valid acc: 0.1477
Iter: 110, train loss: 2.4926, train acc: 0.2188, valid loss: 2.5101, valid acc: 0.1477
Iter: 120, train loss: 2.5231, train acc: 0.1406, valid loss: 2.5051, valid acc: 0.1523
Iter: 130, train loss: 2.5002, train acc: 0.1875, valid loss: 2.4998, valid acc: 0.1508
Iter: 140, train loss: 2.5050, train acc: 0.1094, valid loss: 2.4943, valid acc: 0.1554
Iter: 150, train loss: 2.5320, train acc: 0.0781, valid loss: 2.4894, valid acc: 0.1600
Iter: 160, train loss: 2.5189, train acc: 0.1094, valid loss: 2.4844, valid acc: 0.1662
Iter: 170, train loss: 2.5043, train acc: 0.1250, valid loss: 2.4792, valid acc: 0.1685
Iter: 180, train loss: 2.4755, train acc: 0.1562, valid loss: 2.4737, valid acc: 0.1692
Iter: 190, train loss: 2.4512, train acc: 0.1875, valid loss: 2.4685, valid acc: 0.1646
Iter: 200, train loss: 2.4473, train acc: 0.1719, valid loss: 2.4634, valid acc: 0.1677
Iter: 210, train loss: 2.4430, train acc: 0.1406, valid loss: 2.4585, valid acc: 0.1754
Iter: 220, train loss: 2.4230, train acc: 0.1875, valid loss: 2.4534, valid acc: 0.1746
Iter: 230, train loss: 2.5086, train acc: 0.1406, valid loss: 2.4489, valid acc: 0.1700
Iter: 240, train loss: 2.4409, train acc: 0.0625, valid loss: 2.4449, valid acc: 0.1785
Iter: 250, train loss: 2.5113, train acc: 0.0625, valid loss: 2.4400, valid acc: 0.1800
Iter: 260, train loss: 2.4097, train acc: 0.2344, valid loss: 2.4344, valid acc: 0.1808
Iter: 270, train loss: 2.3959, train acc: 0.1250, valid loss: 2.4292, valid acc: 0.1838
Iter: 280, train loss: 2.4486, train acc: 0.1094, valid loss: 2.4236, valid acc: 0.1831
Iter: 290, train loss: 2.3971, train acc: 0.1875, valid loss: 2.4182, valid acc: 0.1823
Iter: 300, train loss: 2.4313, train acc: 0.1562, valid loss: 2.4133, valid acc: 0.1823
Iter: 310, train loss: 2.3792, train acc: 0.1719, valid loss: 2.4082, valid acc: 0.1792
Iter: 320, train loss: 2.3941, train acc: 0.2031, valid loss: 2.4038, valid acc: 0.1800
Iter: 330, train loss: 2.4678, train acc: 0.1406, valid loss: 2.3997, valid acc: 0.1846
Iter: 340, train loss: 2.4761, train acc: 0.1250, valid loss: 2.3953, valid acc: 0.1885
Iter: 350, train loss: 2.3540, train acc: 0.1719, valid loss: 2.3902, valid acc: 0.1885
Iter: 360, train loss: 2.3834, train acc: 0.2344, valid loss: 2.3855, valid acc: 0.1862
Iter: 370, train loss: 2.3411, train acc: 0.2500, valid loss: 2.3809, valid acc: 0.1885
Iter: 380, train loss: 2.4164, train acc: 0.1875, valid loss: 2.3767, valid acc: 0.1915
Iter: 390, train loss: 2.3796, train acc: 0.1875, valid loss: 2.3723, valid acc: 0.1946
Iter: 400, train loss: 2.3666, train acc: 0.1719, valid loss: 2.3681, valid acc: 0.1892
Iter: 410, train loss: 2.3503, train acc: 0.1875, valid loss: 2.3641, valid acc: 0.1985
Iter: 420, train loss: 2.3653, train acc: 0.1719, valid loss: 2.3599, valid acc: 0.1977
Iter: 430, train loss: 2.3443, train acc: 0.2188, valid loss: 2.3557, valid acc: 0.2069
Iter: 440, train loss: 2.3326, train acc: 0.1719, valid loss: 2.3514, valid acc: 0.2077
Iter: 450, train loss: 2.3256, train acc: 0.2656, valid loss: 2.3472, valid acc: 0.2115
Iter: 460, train loss: 2.3333, train acc: 0.2031, valid loss: 2.3432, valid acc: 0.2146
Iter: 470, train loss: 2.2365, train acc: 0.3438, valid loss: 2.3392, valid acc: 0.2138
Iter: 480, train loss: 2.3524, train acc: 0.1719, valid loss: 2.3355, valid acc: 0.2146
Iter: 490, train loss: 2.2976, train acc: 0.2500, valid loss: 2.3318, valid acc: 0.2138
Iter: 500, train loss: 2.3990, train acc: 0.1094, valid loss: 2.3285, valid acc: 0.2162
Iter: 510, train loss: 2.3377, train acc: 0.1875, valid loss: 2.3252, valid acc: 0.2146
Iter: 520, train loss: 2.2551, train acc: 0.2656, valid loss: 2.3217, valid acc: 0.2131
Iter: 530, train loss: 2.3109, train acc: 0.1562, valid loss: 2.3183, valid acc: 0.2162
Iter: 540, train loss: 2.2936, train acc: 0.2188, valid loss: 2.3153, valid acc: 0.2169
Iter: 550, train loss: 2.2519, train acc: 0.2812, valid loss: 2.3125, valid acc: 0.2177
Iter: 560, train loss: 2.3035, train acc: 0.2031, valid loss: 2.3093, valid acc: 0.2208
Iter: 570, train loss: 2.2455, train acc: 0.2344, valid loss: 2.3057, valid acc: 0.2231
Iter: 580, train loss: 2.2971, train acc: 0.2188, valid loss: 2.3025, valid acc: 0.2185
Iter: 590, train loss: 2.2579, train acc: 0.2656, valid loss: 2.2990, valid acc: 0.2177
Iter: 600, train loss: 2.2035, train acc: 0.2656, valid loss: 2.2959, valid acc: 0.2200
Iter: 610, train loss: 2.3431, train acc: 0.2031, valid loss: 2.2926, valid acc: 0.2208
Iter: 620, train loss: 2.4083, train acc: 0.2188, valid loss: 2.2901, valid acc: 0.2215
Iter: 630, train loss: 2.2991, train acc: 0.2031, valid loss: 2.2868, valid acc: 0.2223
Iter: 640, train loss: 2.2152, train acc: 0.3438, valid loss: 2.2845, valid acc: 0.2215
Iter: 650, train loss: 2.2793, train acc: 0.1719, valid loss: 2.2817, valid acc: 0.2223
Iter: 660, train loss: 2.2368, train acc: 0.3281, valid loss: 2.2789, valid acc: 0.2238
Iter: 670, train loss: 2.3546, train acc: 0.1719, valid loss: 2.2764, valid acc: 0.2231
Iter: 680, train loss: 2.2970, train acc: 0.1719, valid loss: 2.2736, valid acc: 0.2223
Iter: 690, train loss: 2.2552, train acc: 0.2656, valid loss: 2.2707, valid acc: 0.2246
Iter: 700, train loss: 2.2516, train acc: 0.1562, valid loss: 2.2676, valid acc: 0.2285
Iter: 710, train loss: 2.3488, train acc: 0.1719, valid loss: 2.2657, valid acc: 0.2338
Iter: 720, train loss: 2.2188, train acc: 0.3594, valid loss: 2.2634, valid acc: 0.2323
Iter: 730, train loss: 2.3272, train acc: 0.1250, valid loss: 2.2609, valid acc: 0.2346
Iter: 740, train loss: 2.2616, train acc: 0.3438, valid loss: 2.2583, valid acc: 0.2369
Iter: 750, train loss: 2.1883, train acc: 0.2969, valid loss: 2.2559, valid acc: 0.2346
Iter: 760, train loss: 2.3402, train acc: 0.1562, valid loss: 2.2536, valid acc: 0.2346
Iter: 770, train loss: 2.2177, train acc: 0.2188, valid loss: 2.2520, valid acc: 0.2354
Iter: 780, train loss: 2.3219, train acc: 0.1406, valid loss: 2.2501, valid acc: 0.2331
Iter: 790, train loss: 2.2685, train acc: 0.2500, valid loss: 2.2480, valid acc: 0.2362
Iter: 800, train loss: 2.0864, train acc: 0.2969, valid loss: 2.2456, valid acc: 0.2377
Iter: 810, train loss: 2.3192, train acc: 0.2656, valid loss: 2.2436, valid acc: 0.2385
Iter: 820, train loss: 2.2444, train acc: 0.2656, valid loss: 2.2415, valid acc: 0.2400
Iter: 830, train loss: 2.1735, train acc: 0.2812, valid loss: 2.2391, valid acc: 0.2408
Iter: 840, train loss: 2.1517, train acc: 0.3281, valid loss: 2.2370, valid acc: 0.2431
Iter: 850, train loss: 2.2640, train acc: 0.2188, valid loss: 2.2358, valid acc: 0.2408
Iter: 860, train loss: 2.2336, train acc: 0.2188, valid loss: 2.2343, valid acc: 0.2415
Iter: 870, train loss: 2.1758, train acc: 0.2656, valid loss: 2.2323, valid acc: 0.2392
Iter: 880, train loss: 2.1359, train acc: 0.3438, valid loss: 2.2303, valid acc: 0.2400
Iter: 890, train loss: 2.2167, train acc: 0.3281, valid loss: 2.2288, valid acc: 0.2408
Iter: 900, train loss: 2.2375, train acc: 0.2031, valid loss: 2.2274, valid acc: 0.2462
Iter: 910, train loss: 2.0695, train acc: 0.3438, valid loss: 2.2257, valid acc: 0.2446
Iter: 920, train loss: 2.2029, train acc: 0.1719, valid loss: 2.2238, valid acc: 0.2454
Iter: 930, train loss: 2.1782, train acc: 0.2500, valid loss: 2.2221, valid acc: 0.2454
Iter: 940, train loss: 2.2485, train acc: 0.2188, valid loss: 2.2201, valid acc: 0.2454
Iter: 950, train loss: 2.2405, train acc: 0.2188, valid loss: 2.2186, valid acc: 0.2446
Iter: 960, train loss: 2.1822, train acc: 0.2031, valid loss: 2.2172, valid acc: 0.2431
Iter: 970, train loss: 2.1362, train acc: 0.2656, valid loss: 2.2156, valid acc: 0.2500
Iter: 980, train loss: 2.0514, train acc: 0.3281, valid loss: 2.2141, valid acc: 0.2469
Iter: 990, train loss: 2.2700, train acc: 0.1562, valid loss: 2.2129, valid acc: 0.2431
Iter: 1000, train loss: 2.1257, train acc: 0.2344, valid loss: 2.2118, valid acc: 0.2415