Iter-1, train loss: 40.17664305, valid loss: 595.86430121
Iter-2, train loss: 35.56985701, valid loss: 596.25142097
Iter-3, train loss: 32.42972038, valid loss: 598.63829772
Iter-4, train loss: 29.94224640, valid loss: 603.47599300
Iter-5, train loss: 27.95805331, valid loss: 610.59662444
Iter-6, train loss: 26.40043235, valid loss: 618.77277694
Iter-7, train loss: 25.15489396, valid loss: 626.41031852
Iter-8, train loss: 24.10799124, valid loss: 632.34503132
Iter-9, train loss: 23.18561732, valid loss: 635.95515148
Iter-10, train loss: 22.34675290, valid loss: 637.20494450
Iter-11, train loss: 21.56754013, valid loss: 636.48658489
Iter-12, train loss: 20.83178653, valid loss: 634.30150163
Iter-13, train loss: 20.12671819, valid loss: 631.05814321
Iter-14, train loss: 19.44135762, valid loss: 627.03825552
Iter-15, train loss: 18.76605375, valid loss: 622.41535258
Iter-16, train loss: 18.09299493, valid loss: 617.33023310
Iter-17, train loss: 17.41727763, valid loss: 611.98514078
Iter-18, train loss: 16.73809498, valid loss: 606.73181842
Iter-19, train loss: 16.05995419, valid loss: 602.21126633
Iter-20, train loss: 15.39277570, valid loss: 599.45787738
Iter-21, train loss: 14.74981561, valid loss: 599.78010425
Iter-22, train loss: 14.14452690, valid loss: 604.20913741
Iter-23, train loss: 13.58626695, valid loss: 612.65917108
Iter-24, train loss: 13.07628499, valid loss: 623.52136872
Iter-25, train loss: 12.60797436, valid loss: 634.03513125
Iter-26, train loss: 12.17196663, valid loss: 641.38284212
Iter-27, train loss: 11.76116305, valid loss: 643.93673407
Iter-28, train loss: 11.37210110, valid loss: 641.67928582
Iter-29, train loss: 11.00363955, valid loss: 635.76302290
Iter-30, train loss: 10.65523918, valid loss: 627.91382034
Iter-31, train loss: 10.32593297, valid loss: 620.09374900
Iter-32, train loss: 10.01403991, valid loss: 614.32866664
Iter-33, train loss: 9.71734112, valid loss: 612.19625000
Iter-34, train loss: 9.43343448, valid loss: 614.98750284
Iter-35, train loss: 9.16006927, valid loss: 651.05043076
Iter-36, train loss: 8.89536878, valid loss: 757.10639674
Iter-37, train loss: 8.63793051, valid loss: 863.70506914
Iter-38, train loss: 8.38683249, valid loss: 2560.84110036
Iter-39, train loss: 8.14158168, valid loss: 2595.14030456
Iter-40, train loss: 7.90203221, valid loss: 2598.84147169
Iter-41, train loss: 7.66829378, valid loss: 2579.52429498
Iter-42, train loss: 7.44064599, valid loss: 2539.42035136
Iter-43, train loss: 7.21947130, valid loss: 2479.27830218
Iter-44, train loss: 7.00521497, valid loss: 2399.05270166
Iter-45, train loss: 6.79837572, valid loss: 2299.83302557
Iter-46, train loss: 6.59952288, valid loss: 2188.60609951
Iter-47, train loss: 6.40932267, valid loss: 2058.61714375
Iter-48, train loss: 6.22854412, valid loss: 1886.46033495
Iter-49, train loss: 6.05801700, valid loss: 1641.78899293
Iter-50, train loss: 5.89853615, valid loss: 1317.74408813
Iter-51, train loss: 5.75073718, valid loss: 782.25832766
Iter-52, train loss: 5.61498624, valid loss: 1270.84058175
Iter-53, train loss: 5.49132014, valid loss: 1669.29979216
Iter-54, train loss: 5.37944925, valid loss: 1762.11267474
Iter-55, train loss: 5.27881083, valid loss: 1731.94756231
Iter-56, train loss: 5.18864882, valid loss: 1704.00644271
Iter-57, train loss: 5.10809676, valid loss: 1675.53715030
Iter-58, train loss: 5.03624850, valid loss: 1650.68514744
Iter-59, train loss: 4.97221031, valid loss: 1602.56468537
Iter-60, train loss: 4.91513448, valid loss: 1561.29274312
Iter-61, train loss: 4.86423761, valid loss: 1554.92441608
Iter-62, train loss: 4.81880800, valid loss: 1563.51079228
Iter-63, train loss: 4.77820593, valid loss: 1569.29119820
Iter-64, train loss: 4.74185989, valid loss: 1570.23702899
Iter-65, train loss: 4.70926071, valid loss: 1572.59171942
Iter-66, train loss: 4.67995511, valid loss: 1575.12584115
Iter-67, train loss: 4.65353930, valid loss: 1578.66420446
Iter-68, train loss: 4.62965303, valid loss: 1581.08309136
Iter-69, train loss: 4.60797444, valid loss: 1581.90922607
Iter-70, train loss: 4.58821562, valid loss: 1584.41279658
Iter-71, train loss: 4.57011888, valid loss: 1585.83176485
Iter-72, train loss: 4.55345363, valid loss: 1592.35888198
Iter-73, train loss: 4.53801380, valid loss: 1600.36680358
Iter-74, train loss: 4.52361568, valid loss: 1607.18972035
Iter-75, train loss: 4.51009594, valid loss: 1615.69066922
Iter-76, train loss: 4.49730993, valid loss: 1620.64512404
Iter-77, train loss: 4.48513001, valid loss: 1612.12607437
Iter-78, train loss: 4.47344389, valid loss: 1618.20103612
Iter-79, train loss: 4.46215301, valid loss: 1627.49511267
Iter-80, train loss: 4.45117088, valid loss: 1640.01465733
Iter-81, train loss: 4.44042141, valid loss: 1656.82800631
Iter-82, train loss: 4.42983734, valid loss: 1676.38530329
Iter-83, train loss: 4.41935876, valid loss: 1708.71235298
Iter-84, train loss: 4.40893173, valid loss: 1742.94019875
Iter-85, train loss: 4.39850727, valid loss: 1769.56787182
Iter-86, train loss: 4.38804043, valid loss: 1790.56166167
Iter-87, train loss: 4.37748987, valid loss: 1798.53819914
Iter-88, train loss: 4.36681755, valid loss: 1813.43644619
Iter-89, train loss: 4.35598883, valid loss: 1825.09640533
Iter-90, train loss: 4.34497273, valid loss: 1840.37475816
Iter-91, train loss: 4.33374239, valid loss: 1855.92650706
Iter-92, train loss: 4.32227559, valid loss: 1867.39674697
Iter-93, train loss: 4.31055532, valid loss: 1876.93466755
Iter-94, train loss: 4.29857024, valid loss: 1884.98882196
Iter-95, train loss: 4.28631499, valid loss: 1887.31382302
Iter-96, train loss: 4.27379037, valid loss: 1893.04082803
Iter-97, train loss: 4.26100324, valid loss: 1897.88248670
Iter-98, train loss: 4.24796628, valid loss: 1901.56934095
Iter-99, train loss: 4.23469748, valid loss: 1905.77374494
Iter-100, train loss: 4.22121951, valid loss: 1905.86588184
Iter-101, train loss: 4.20755894, valid loss: 1905.65759830
Iter-102, train loss: 4.19374538, valid loss: 1903.09512777
Iter-103, train loss: 4.17981064, valid loss: 1903.38160765
Iter-104, train loss: 4.16578784, valid loss: 1898.07106167
Iter-105, train loss: 4.15171067, valid loss: 1894.81453651
Iter-106, train loss: 4.13761265, valid loss: 1898.70172440
Iter-107, train loss: 4.12352654, valid loss: 1884.55201811
Iter-108, train loss: 4.10948389, valid loss: 1863.51785042
Iter-109, train loss: 4.09551467, valid loss: 1788.06600491
Iter-110, train loss: 4.08164702, valid loss: 1793.66124641
Iter-111, train loss: 4.06790713, valid loss: 1796.94844812
Iter-112, train loss: 4.05431917, valid loss: 1799.82169571
Iter-113, train loss: 4.04090532, valid loss: 1802.16164745
Iter-114, train loss: 4.02768580, valid loss: 1794.08426460
Iter-115, train loss: 4.01467906, valid loss: 1792.72343779
Iter-116, train loss: 4.00190182, valid loss: 1788.83486177
Iter-117, train loss: 3.98936924, valid loss: 1819.57047147
Iter-118, train loss: 3.97709510, valid loss: 1818.25296849
Iter-119, train loss: 3.96509184, valid loss: 1823.30561481
Iter-120, train loss: 3.95337077, valid loss: 1819.99187999
Iter-121, train loss: 3.94194207, valid loss: 1833.00314292
Iter-122, train loss: 3.93081493, valid loss: 1823.45828204
Iter-123, train loss: 3.91999759, valid loss: 1841.82382887
Iter-124, train loss: 3.90949735, valid loss: 1832.99309487
Iter-125, train loss: 3.89932062, valid loss: 1853.99199355
Iter-126, train loss: 3.88947291, valid loss: 1837.82036697
Iter-127, train loss: 3.87995885, valid loss: 1811.69726971
Iter-128, train loss: 3.87078218, valid loss: 1804.21031700
Iter-129, train loss: 3.86194573, valid loss: 1873.10996802
Iter-130, train loss: 3.85345145, valid loss: 1845.75462787
Iter-131, train loss: 3.84530038, valid loss: 1810.40273546
Iter-132, train loss: 3.83749268, valid loss: 1819.52445189
Iter-133, train loss: 3.83002764, valid loss: 1820.80446943
Iter-134, train loss: 3.82290368, valid loss: 1811.23672282
Iter-135, train loss: 3.81611840, valid loss: 1819.74483173
Iter-136, train loss: 3.80966860, valid loss: 1817.01307933
Iter-137, train loss: 3.80355036, valid loss: 1818.17583243
Iter-138, train loss: 3.79775903, valid loss: 1823.36150815
Iter-139, train loss: 3.79228929, valid loss: 1823.47853286
Iter-140, train loss: 3.78713527, valid loss: 1824.81344737
Iter-141, train loss: 3.78229051, valid loss: 1824.44843008
Iter-142, train loss: 3.77774810, valid loss: 1824.69866768
Iter-143, train loss: 3.77350067, valid loss: 1817.03959519
Iter-144, train loss: 3.76954049, valid loss: 1821.70889914
Iter-145, train loss: 3.76585954, valid loss: 1792.33482464
Iter-146, train loss: 3.76244952, valid loss: 1797.00294900
Iter-147, train loss: 3.75930192, valid loss: 1795.30541429
Iter-148, train loss: 3.75640808, valid loss: 1803.59366127
Iter-149, train loss: 3.75375925, valid loss: 1796.59742260
Iter-150, train loss: 3.75134659, valid loss: 1803.23673550
Iter-151, train loss: 3.74916125, valid loss: 1800.34972881
Iter-152, train loss: 3.74719441, valid loss: 1805.91552369
Iter-153, train loss: 3.74543727, valid loss: 1806.31092073
Iter-154, train loss: 3.74388114, valid loss: 1805.31539929
Iter-155, train loss: 3.74251743, valid loss: 1812.46429153
Iter-156, train loss: 3.74133769, valid loss: 1801.15011243
Iter-157, train loss: 3.74033363, valid loss: 1801.68106275
Iter-158, train loss: 3.73949713, valid loss: 1811.46977710
Iter-159, train loss: 3.73882027, valid loss: 1814.58620119
Iter-160, train loss: 3.73829535, valid loss: 1817.30310799
Iter-161, train loss: 3.73791489, valid loss: 1810.97167103
Iter-162, train loss: 3.73767162, valid loss: 1796.16672991
Iter-163, train loss: 3.73755855, valid loss: 1799.43768864
Iter-164, train loss: 3.73756891, valid loss: 1791.53602600
Iter-165, train loss: 3.73769617, valid loss: 1812.79622566
Iter-166, train loss: 3.73793410, valid loss: 1752.89972164
Iter-167, train loss: 3.73827667, valid loss: 1752.55456166
Iter-168, train loss: 3.73871814, valid loss: 1741.04875663
Iter-169, train loss: 3.73925303, valid loss: 1756.01425208
Iter-170, train loss: 3.73987608, valid loss: 1736.83060761
Iter-171, train loss: 3.74058232, valid loss: 1793.28354293
Iter-172, train loss: 3.74136699, valid loss: 1728.74724746
Iter-173, train loss: 3.74222560, valid loss: 1733.93080132
Iter-174, train loss: 3.74315388, valid loss: 1719.60225560
Iter-175, train loss: 3.74414779, valid loss: 1770.48121848
Iter-176, train loss: 3.74520353, valid loss: 1792.84347862
Iter-177, train loss: 3.74631751, valid loss: 1780.10939941
Iter-178, train loss: 3.74748636, valid loss: 1734.13909575
Iter-179, train loss: 3.74870688, valid loss: 1730.88774004
Iter-180, train loss: 3.74997612, valid loss: 1759.59781000
Iter-181, train loss: 3.75129129, valid loss: 1713.90961395
Iter-182, train loss: 3.75264978, valid loss: 1764.64871674
Iter-183, train loss: 3.75404915, valid loss: 1717.25812301
Iter-184, train loss: 3.75548715, valid loss: 1764.91921246
Iter-185, train loss: 3.75696166, valid loss: 1702.60677368
Iter-186, train loss: 3.75847073, valid loss: 1745.57039429
Iter-187, train loss: 3.76001255, valid loss: 1722.83482034
Iter-188, train loss: 3.76158542, valid loss: 1737.58967706
Iter-189, train loss: 3.76318780, valid loss: 1697.26922930
Iter-190, train loss: 3.76481823, valid loss: 1671.85178135
Iter-191, train loss: 3.76647540, valid loss: 1688.37612972
Iter-192, train loss: 3.76815805, valid loss: 1695.96293622
Iter-193, train loss: 3.76986507, valid loss: 1674.50707875
Iter-194, train loss: 3.77159539, valid loss: 1705.69782244
Iter-195, train loss: 3.77334805, valid loss: 1682.86476918
Iter-196, train loss: 3.77512213, valid loss: 1726.79877612
Iter-197, train loss: 3.77691680, valid loss: 1717.18578052
Iter-198, train loss: 3.77873127, valid loss: 1691.45171880
Iter-199, train loss: 3.78056480, valid loss: 1635.70965860
Iter-200, train loss: 3.78241671, valid loss: 1640.76918901
Out[9]:
<__main__.GRU at 0x7f56d7433320>