Iter-1, train loss: 52.48679206, valid loss: 687.64467528
Iter-2, train loss: 47.12981756, valid loss: 687.53371487
Iter-3, train loss: 43.28666262, valid loss: 687.19000465
Iter-4, train loss: 40.10471976, valid loss: 686.89622298
Iter-5, train loss: 37.45230600, valid loss: 686.76546199
Iter-6, train loss: 35.22044607, valid loss: 686.91449931
Iter-7, train loss: 33.26902265, valid loss: 687.52648750
Iter-8, train loss: 31.50173104, valid loss: 688.83683485
Iter-9, train loss: 29.86023016, valid loss: 691.14340395
Iter-10, train loss: 28.30119011, valid loss: 694.87638208
Iter-11, train loss: 26.78799346, valid loss: 700.74888783
Iter-12, train loss: 25.29076298, valid loss: 709.98401037
Iter-13, train loss: 23.79029250, valid loss: 724.83141468
Iter-14, train loss: 22.28328086, valid loss: 749.58901274
Iter-15, train loss: 20.78590738, valid loss: 792.01424047
Iter-16, train loss: 19.33333990, valid loss: 862.00852086
Iter-17, train loss: 17.97096054, valid loss: 958.76187693
Iter-18, train loss: 16.73704808, valid loss: 1059.44863584
Iter-19, train loss: 15.64971051, valid loss: 1141.27772711
Iter-20, train loss: 14.70940757, valid loss: 1197.98837692
Iter-21, train loss: 13.90620485, valid loss: 1231.54166111
Iter-22, train loss: 13.22223629, valid loss: 1244.46514701
Iter-23, train loss: 12.63423284, valid loss: 1238.33319653
Iter-24, train loss: 12.11942944, valid loss: 1214.61656438
Iter-25, train loss: 11.66047155, valid loss: 1194.41204696
Iter-26, train loss: 11.24614476, valid loss: 1194.29231082
Iter-27, train loss: 10.86959291, valid loss: 1245.48044211
Iter-28, train loss: 10.52631637, valid loss: 1304.80334436
Iter-29, train loss: 10.21275791, valid loss: 1416.01236948
Iter-30, train loss: 9.92551659, valid loss: 1526.72688256
Iter-31, train loss: 9.66110724, valid loss: 1262.40765459
Iter-32, train loss: 9.41609003, valid loss: 1549.64562459
Iter-33, train loss: 9.18732433, valid loss: 1366.34643677
Iter-34, train loss: 8.97214210, valid loss: 775.95718263
Iter-35, train loss: 8.76836872, valid loss: 758.97934855
Iter-36, train loss: 8.57425029, valid loss: 750.42061287
Iter-37, train loss: 8.38837088, valid loss: 745.38980528
Iter-38, train loss: 8.20959434, valid loss: 742.67353582
Iter-39, train loss: 8.03703130, valid loss: 741.46426766
Iter-40, train loss: 7.87002225, valid loss: 741.25718845
Iter-41, train loss: 7.70812567, valid loss: 741.90948338
Iter-42, train loss: 7.55110296, valid loss: 744.24687661
Iter-43, train loss: 7.39889622, valid loss: 752.35853701
Iter-44, train loss: 7.25159904, valid loss: 770.74350821
Iter-45, train loss: 7.10942240, valid loss: 1094.45027048
Iter-46, train loss: 6.97265865, valid loss: 1163.60902111
Iter-47, train loss: 6.84164627, valid loss: 1422.85500415
Iter-48, train loss: 6.71673733, valid loss: 1623.22967379
Iter-49, train loss: 6.59826905, valid loss: 1598.01315358
Iter-50, train loss: 6.48654036, valid loss: 1453.31025896
Iter-51, train loss: 6.38179391, valid loss: 1318.52523744
Iter-52, train loss: 6.28420402, valid loss: 1362.00331257
Iter-53, train loss: 6.19387011, valid loss: 1358.11226392
Iter-54, train loss: 6.11081522, valid loss: 1384.20423248
Iter-55, train loss: 6.03498819, valid loss: 1440.24715754
Iter-56, train loss: 5.96626805, valid loss: 1473.05423640
Iter-57, train loss: 5.90446932, valid loss: 1334.23582349
Iter-58, train loss: 5.84934721, valid loss: 1538.93312335
Iter-59, train loss: 5.80060235, valid loss: 1554.39684763
Iter-60, train loss: 5.75788525, valid loss: 1559.11569087
Iter-61, train loss: 5.72080081, valid loss: 1584.35446504
Iter-62, train loss: 5.68891372, valid loss: 1541.33165487
Iter-63, train loss: 5.66175520, valid loss: 1482.68752175
Iter-64, train loss: 5.63883165, valid loss: 1534.51077201
Iter-65, train loss: 5.61963531, valid loss: 1546.11052554
Iter-66, train loss: 5.60365658, valid loss: 1531.57233765
Iter-67, train loss: 5.59039727, valid loss: 1551.17724987
Iter-68, train loss: 5.57938371, valid loss: 1570.42884252
Iter-69, train loss: 5.57017855, valid loss: 1576.79732564
Iter-70, train loss: 5.56239008, valid loss: 1571.15308266
Iter-71, train loss: 5.55567832, valid loss: 1574.98949670
Iter-72, train loss: 5.54975755, valid loss: 1579.06148160
Iter-73, train loss: 5.54439545, valid loss: 1582.91286991
Iter-74, train loss: 5.53940943, valid loss: 1583.57940565
Iter-75, train loss: 5.53466077, valid loss: 1587.95849378
Iter-76, train loss: 5.53004761, valid loss: 1599.12131556
Iter-77, train loss: 5.52549753, valid loss: 1576.30917005
Iter-78, train loss: 5.52096028, valid loss: 1570.56960090
Iter-79, train loss: 5.51640128, valid loss: 1557.95511360
Iter-80, train loss: 5.51179604, valid loss: 1559.32492728
Iter-81, train loss: 5.50712570, valid loss: 1547.82770817
Iter-82, train loss: 5.50237360, valid loss: 1533.37385385
Iter-83, train loss: 5.49752293, valid loss: 1494.03643894
Iter-84, train loss: 5.49255507, valid loss: 1482.57166969
Iter-85, train loss: 5.48744885, valid loss: 1494.99711636
Iter-86, train loss: 5.48218013, valid loss: 1499.11183227
Iter-87, train loss: 5.47672189, valid loss: 1494.60028230
Iter-88, train loss: 5.47104458, valid loss: 1483.85216494
Iter-89, train loss: 5.46511659, valid loss: 1481.53821470
Iter-90, train loss: 5.45890477, valid loss: 1486.57936083
Iter-91, train loss: 5.45237504, valid loss: 1493.08444251
Iter-92, train loss: 5.44549282, valid loss: 1511.73063151
Iter-93, train loss: 5.43822354, valid loss: 1545.20454745
Iter-94, train loss: 5.43053296, valid loss: 1572.23164938
Iter-95, train loss: 5.42238738, valid loss: 1539.80057585
Iter-96, train loss: 5.41375388, valid loss: 1399.24896901
Iter-97, train loss: 5.40460032, valid loss: 1473.16610515
Iter-98, train loss: 5.39489543, valid loss: 1501.55652557
Iter-99, train loss: 5.38460874, valid loss: 1539.79366282
Iter-100, train loss: 5.37371056, valid loss: 1580.22016464
Iter-101, train loss: 5.36217196, valid loss: 1592.26383944
Iter-102, train loss: 5.34996479, valid loss: 1580.46473800
Iter-103, train loss: 5.33706173, valid loss: 1568.39080767
Iter-104, train loss: 5.32343652, valid loss: 1565.11505426
Iter-105, train loss: 5.30906424, valid loss: 1580.21617613
Iter-106, train loss: 5.29392175, valid loss: 1601.86384894
Iter-107, train loss: 5.27798838, valid loss: 1631.54714998
Iter-108, train loss: 5.26124669, valid loss: 1668.32555940
Iter-109, train loss: 5.24368346, valid loss: 1702.20660945
Iter-110, train loss: 5.22529090, valid loss: 1731.12530116
Iter-111, train loss: 5.20606781, valid loss: 1754.81034376
Iter-112, train loss: 5.18602101, valid loss: 1767.52316542
Iter-113, train loss: 5.16516655, valid loss: 1777.80767616
Iter-114, train loss: 5.14353088, valid loss: 1794.84886756
Iter-115, train loss: 5.12115175, valid loss: 1821.89029657
Iter-116, train loss: 5.09807868, valid loss: 1833.39142114
Iter-117, train loss: 5.07437293, valid loss: 1836.44931176
Iter-118, train loss: 5.05010689, valid loss: 1821.11993615
Iter-119, train loss: 5.02536280, valid loss: 1811.07224912
Iter-120, train loss: 5.00023088, valid loss: 1794.00269315
Iter-121, train loss: 4.97480690, valid loss: 1809.42538259
Iter-122, train loss: 4.94918938, valid loss: 1848.55727193
Iter-123, train loss: 4.92347658, valid loss: 1859.44002970
Iter-124, train loss: 4.89776361, valid loss: 1629.20810339
Iter-125, train loss: 4.87213967, valid loss: 1675.59382227
Iter-126, train loss: 4.84668582, valid loss: 1702.06838968
Iter-127, train loss: 4.82147329, valid loss: 1023.52341272
Iter-128, train loss: 4.79656242, valid loss: 1893.95377120
Iter-129, train loss: 4.77200222, valid loss: 1918.23877653
Iter-130, train loss: 4.74783054, valid loss: 1847.30601617
Iter-131, train loss: 4.72407470, valid loss: 1828.70483594
Iter-132, train loss: 4.70075249, valid loss: 1842.87676538
Iter-133, train loss: 4.67787341, valid loss: 1863.83689325
Iter-134, train loss: 4.65544000, valid loss: 1878.96406976
Iter-135, train loss: 4.63344931, valid loss: 1901.21466732
Iter-136, train loss: 4.61189414, valid loss: 1915.95667197
Iter-137, train loss: 4.59076430, valid loss: 1918.81008799
Iter-138, train loss: 4.57004764, valid loss: 1918.78576311
Iter-139, train loss: 4.54973096, valid loss: 1912.62023293
Iter-140, train loss: 4.52980069, valid loss: 1896.07116924
Iter-141, train loss: 4.51024346, valid loss: 1878.12355235
Iter-142, train loss: 4.49104643, valid loss: 1862.00994607
Iter-143, train loss: 4.47219759, valid loss: 1838.54389327
Iter-144, train loss: 4.45368590, valid loss: 1859.83186685
Iter-145, train loss: 4.43550128, valid loss: 1880.21145458
Iter-146, train loss: 4.41763465, valid loss: 1911.64296152
Iter-147, train loss: 4.40007786, valid loss: 1944.90776676
Iter-148, train loss: 4.38282355, valid loss: 1973.02146365
Iter-149, train loss: 4.36586507, valid loss: 1993.51643594
Iter-150, train loss: 4.34919632, valid loss: 2006.83239887
Iter-151, train loss: 4.33281169, valid loss: 2014.40525574
Iter-152, train loss: 4.31670588, valid loss: 2018.21133459
Iter-153, train loss: 4.30087385, valid loss: 2020.09577350
Iter-154, train loss: 4.28531069, valid loss: 2045.71806888
Iter-155, train loss: 4.27001157, valid loss: 2041.63508405
Iter-156, train loss: 4.25497171, valid loss: 2047.37541421
Iter-157, train loss: 4.24018630, valid loss: 2038.91366001
Iter-158, train loss: 4.22565047, valid loss: 2032.07706462
Iter-159, train loss: 4.21135931, valid loss: 2078.47504820
Iter-160, train loss: 4.19730785, valid loss: 2067.63963750
Iter-161, train loss: 4.18349105, valid loss: 2049.64242751
Iter-162, train loss: 4.16990382, valid loss: 2034.53789507
Iter-163, train loss: 4.15654103, valid loss: 2015.91318868
Iter-164, train loss: 4.14339755, valid loss: 2000.97728337
Iter-165, train loss: 4.13046824, valid loss: 2013.86011747
Iter-166, train loss: 4.11774797, valid loss: 2020.49106891
Iter-167, train loss: 4.10523166, valid loss: 2033.16892731
Iter-168, train loss: 4.09291430, valid loss: 2034.52812047
Iter-169, train loss: 4.08079096, valid loss: 2044.46056095
Iter-170, train loss: 4.06885680, valid loss: 2032.25253239
Iter-171, train loss: 4.05710709, valid loss: 2034.44297749
Iter-172, train loss: 4.04553722, valid loss: 2037.33305356
Iter-173, train loss: 4.03414274, valid loss: 2038.31105883
Iter-174, train loss: 4.02291931, valid loss: 1954.60592717
Iter-175, train loss: 4.01186274, valid loss: 1972.99782575
Iter-176, train loss: 4.00096901, valid loss: 1981.57583642
Iter-177, train loss: 3.99023423, valid loss: 2060.06924131
Iter-178, train loss: 3.97965466, valid loss: 2070.50126682
Iter-179, train loss: 3.96922670, valid loss: 2076.91573277
Iter-180, train loss: 3.95894691, valid loss: 2079.02604757
Iter-181, train loss: 3.94881196, valid loss: 2079.19837855
Iter-182, train loss: 3.93881867, valid loss: 2046.96288053
Iter-183, train loss: 3.92896397, valid loss: 2039.39354421
Iter-184, train loss: 3.91924490, valid loss: 2043.76277471
Iter-185, train loss: 3.90965860, valid loss: 2051.45986774
Iter-186, train loss: 3.90020233, valid loss: 2065.73900202
Iter-187, train loss: 3.89087342, valid loss: 2066.19300016
Iter-188, train loss: 3.88166927, valid loss: 2065.03136860
Iter-189, train loss: 3.87258736, valid loss: 2070.55273007
Iter-190, train loss: 3.86362524, valid loss: 1984.56688421
Iter-191, train loss: 3.85478051, valid loss: 2043.61643010
Iter-192, train loss: 3.84605080, valid loss: 1994.56493832
Iter-193, train loss: 3.83743380, valid loss: 1959.57281729
Iter-194, train loss: 3.82892724, valid loss: 2051.83180454
Iter-195, train loss: 3.82052886, valid loss: 1984.29151126
Iter-196, train loss: 3.81223644, valid loss: 1961.70680184
Iter-197, train loss: 3.80404778, valid loss: 1966.49744102
Iter-198, train loss: 3.79596069, valid loss: 1962.48346042
Iter-199, train loss: 3.78797300, valid loss: 1946.03115462
Iter-200, train loss: 3.78008256, valid loss: 1937.62792952
Out[51]:
<__main__.GRU at 0x7f38d22009e8>