Iter-1, train loss: 44.58209738, valid loss: 632.91933191
Iter-2, train loss: 40.54695846, valid loss: 632.66637837
Iter-3, train loss: 37.71799257, valid loss: 632.60491289
Iter-4, train loss: 35.58428305, valid loss: 632.76855749
Iter-5, train loss: 33.92057489, valid loss: 633.18523557
Iter-6, train loss: 32.53510503, valid loss: 633.86385130
Iter-7, train loss: 31.31833946, valid loss: 634.78073362
Iter-8, train loss: 30.21985034, valid loss: 635.89986633
Iter-9, train loss: 29.21195243, valid loss: 637.18510169
Iter-10, train loss: 28.27350289, valid loss: 638.62256895
Iter-11, train loss: 27.38539297, valid loss: 640.24333079
Iter-12, train loss: 26.52927704, valid loss: 642.14047857
Iter-13, train loss: 25.68583522, valid loss: 644.54115907
Iter-14, train loss: 24.83218451, valid loss: 647.99807266
Iter-15, train loss: 23.93790953, valid loss: 653.94559771
Iter-16, train loss: 22.96066335, valid loss: 667.20647982
Iter-17, train loss: 21.87208402, valid loss: 711.25293144
Iter-18, train loss: 20.79209626, valid loss: 833.67833469
Iter-19, train loss: 19.94571025, valid loss: 949.36800222
Iter-20, train loss: 19.17359472, valid loss: 1003.39326086
Iter-21, train loss: 18.42272812, valid loss: 1035.14147886
Iter-22, train loss: 17.70732478, valid loss: 1064.05691536
Iter-23, train loss: 17.02646726, valid loss: 1093.18573119
Iter-24, train loss: 16.38720287, valid loss: 1124.27358938
Iter-25, train loss: 15.79952002, valid loss: 1157.98638747
Iter-26, train loss: 15.26921459, valid loss: 1192.78980242
Iter-27, train loss: 14.79582800, valid loss: 1225.53373820
Iter-28, train loss: 14.37328138, valid loss: 1253.04899584
Iter-29, train loss: 13.99161565, valid loss: 1273.57927521
Iter-30, train loss: 13.63938377, valid loss: 1287.16406479
Iter-31, train loss: 13.30618957, valid loss: 1295.02569511
Iter-32, train loss: 12.98451247, valid loss: 1298.78298644
Iter-33, train loss: 12.67026385, valid loss: 1299.91913417
Iter-34, train loss: 12.36222902, valid loss: 1299.51749322
Iter-35, train loss: 12.06109509, valid loss: 1298.25241437
Iter-36, train loss: 11.76864224, valid loss: 1296.52828873
Iter-37, train loss: 11.48718188, valid loss: 1294.60497197
Iter-38, train loss: 11.21911583, valid loss: 1292.65173681
Iter-39, train loss: 10.96653990, valid loss: 1290.77796006
Iter-40, train loss: 10.73088248, valid loss: 1289.05051653
Iter-41, train loss: 10.51264052, valid loss: 1287.50312521
Iter-42, train loss: 10.31128986, valid loss: 1286.14697820
Iter-43, train loss: 10.12539955, valid loss: 1284.98349386
Iter-44, train loss: 9.95291721, valid loss: 1284.01474314
Iter-45, train loss: 9.79154347, valid loss: 1283.24949666
Iter-46, train loss: 9.63910021, valid loss: 1282.70576931
Iter-47, train loss: 9.49381840, valid loss: 1282.41095487
Iter-48, train loss: 9.35450428, valid loss: 1282.40012291
Iter-49, train loss: 9.22056990, valid loss: 1282.71296447
Iter-50, train loss: 9.09193386, valid loss: 1283.39008380
Iter-51, train loss: 8.96882218, valid loss: 1284.46931008
Iter-52, train loss: 8.85152738, valid loss: 1285.98219951
Iter-53, train loss: 8.74019789, valid loss: 1287.95024494
Iter-54, train loss: 8.63471045, valid loss: 1290.38001457
Iter-55, train loss: 8.53463450, valid loss: 1293.25722839
Iter-56, train loss: 8.43926135, valid loss: 1296.54286007
Iter-57, train loss: 8.34766314, valid loss: 1300.18105917
Iter-58, train loss: 8.25876002, valid loss: 1304.13861015
Iter-59, train loss: 8.17139007, valid loss: 1308.47737740
Iter-60, train loss: 8.08438162, valid loss: 1313.31334777
Iter-61, train loss: 7.99662155, valid loss: 1320.76469294
Iter-62, train loss: 7.90710544, valid loss: 1353.07048474
Iter-63, train loss: 7.81495534, valid loss: 1351.91100269
Iter-64, train loss: 7.71940051, valid loss: 1313.50216033
Iter-65, train loss: 7.61973056, valid loss: 1300.97002572
Iter-66, train loss: 7.51524142, valid loss: 1355.86786469
Iter-67, train loss: 7.40519710, valid loss: 1412.17208657
Iter-68, train loss: 7.28882677, valid loss: 1389.59434010
Iter-69, train loss: 7.16536736, valid loss: 1389.12811963
Iter-70, train loss: 7.03415158, valid loss: 1393.07286345
Iter-71, train loss: 6.89473201, valid loss: 1396.59963949
Iter-72, train loss: 6.74702933, valid loss: 1431.75669267
Iter-73, train loss: 6.59150542, valid loss: 1417.32272044
Iter-74, train loss: 6.42939851, valid loss: 1396.69828666
Iter-75, train loss: 6.26311335, valid loss: 1384.09865933
Iter-76, train loss: 6.09683922, valid loss: 1369.68774904
Iter-77, train loss: 5.93702280, valid loss: 1542.42844148
Iter-78, train loss: 5.79120675, valid loss: 1371.78323229
Iter-79, train loss: 5.66444238, valid loss: 1440.62141279
Iter-80, train loss: 5.55723957, valid loss: 1478.21024250
Iter-81, train loss: 5.46746325, valid loss: 1537.24596727
Iter-82, train loss: 5.39236120, valid loss: 1488.37688722
Iter-83, train loss: 5.32907921, valid loss: 1524.64487481
Iter-84, train loss: 5.27487874, valid loss: 1677.05151564
Iter-85, train loss: 5.22747777, valid loss: 1420.04400924
Iter-86, train loss: 5.18519441, valid loss: 1680.90228581
Iter-87, train loss: 5.14678409, valid loss: 1898.01717907
Iter-88, train loss: 5.11122856, valid loss: 1537.01503282
Iter-89, train loss: 5.07771027, valid loss: 1732.91261767
Iter-90, train loss: 5.04566987, valid loss: 1651.68073934
Iter-91, train loss: 5.01477285, valid loss: 1699.87281003
Iter-92, train loss: 4.98481248, valid loss: 1675.25393322
Iter-93, train loss: 4.95563462, valid loss: 1656.07195078
Iter-94, train loss: 4.92710465, valid loss: 1698.73018556
Iter-95, train loss: 4.89910059, valid loss: 1623.02812799
Iter-96, train loss: 4.87151646, valid loss: 1831.35457558
Iter-97, train loss: 4.84426739, valid loss: 1810.12817512
Iter-98, train loss: 4.81729328, valid loss: 1802.90046266
Iter-99, train loss: 4.79056012, valid loss: 1707.91447681
Iter-100, train loss: 4.76405920, valid loss: 1767.29786339
Iter-101, train loss: 4.73780470, valid loss: 1607.68958248
Iter-102, train loss: 4.71183007, valid loss: 1632.01865611
Iter-103, train loss: 4.68618390, valid loss: 1595.07711542
Iter-104, train loss: 4.66092534, valid loss: 1671.61630472
Iter-105, train loss: 4.63611953, valid loss: 1628.80220678
Iter-106, train loss: 4.61183324, valid loss: 1577.75312495
Iter-107, train loss: 4.58813079, valid loss: 1696.12878848
Iter-108, train loss: 4.56507051, valid loss: 1667.72066678
Iter-109, train loss: 4.54270177, valid loss: 1545.40401330
Iter-110, train loss: 4.52106266, valid loss: 1525.68568280
Iter-111, train loss: 4.50017837, valid loss: 1528.50820108
Iter-112, train loss: 4.48006021, valid loss: 1671.24213462
Iter-113, train loss: 4.46070535, valid loss: 1514.62565564
Iter-114, train loss: 4.44209712, valid loss: 1428.06478441
Iter-115, train loss: 4.42420590, valid loss: 1534.29263029
Iter-116, train loss: 4.40699045, valid loss: 1455.16168078
Iter-117, train loss: 4.39039975, valid loss: 1392.98763412
Iter-118, train loss: 4.37437509, valid loss: 1370.44203652
Iter-119, train loss: 4.35885258, valid loss: 1439.57795410
Iter-120, train loss: 4.34376566, valid loss: 1448.24171037
Iter-121, train loss: 4.32904786, valid loss: 1448.74313964
Iter-122, train loss: 4.31463532, valid loss: 1426.34792937
Iter-123, train loss: 4.30046923, valid loss: 1355.22762640
Iter-124, train loss: 4.28649782, valid loss: 1575.95723805
Iter-125, train loss: 4.27267788, valid loss: 1525.65606423
Iter-126, train loss: 4.25897563, valid loss: 1543.23752485
Iter-127, train loss: 4.24536702, valid loss: 1290.95858558
Iter-128, train loss: 4.23183729, valid loss: 1154.26916529
Iter-129, train loss: 4.21837995, valid loss: 1676.80553052
Iter-130, train loss: 4.20499537, valid loss: 1857.15959850
Iter-131, train loss: 4.19168895, valid loss: 1353.24434738
Iter-132, train loss: 4.17846930, valid loss: 1755.21249314
Iter-133, train loss: 4.16534643, valid loss: 1865.02579582
Iter-134, train loss: 4.15233023, valid loss: 1882.70011211
Iter-135, train loss: 4.13942929, valid loss: 1863.23980123
Iter-136, train loss: 4.12665018, valid loss: 1853.76237235
Iter-137, train loss: 4.11399729, valid loss: 1836.29949605
Iter-138, train loss: 4.10147291, valid loss: 1837.25391267
Iter-139, train loss: 4.08907784, valid loss: 1827.09134746
Iter-140, train loss: 4.07681216, valid loss: 1829.78591767
Iter-141, train loss: 4.06467608, valid loss: 1816.27877947
Iter-142, train loss: 4.05267080, valid loss: 1793.45753301
Iter-143, train loss: 4.04079927, valid loss: 1806.32020625
Iter-144, train loss: 4.02906671, valid loss: 1803.26602573
Iter-145, train loss: 4.01748092, valid loss: 1785.67921546
Iter-146, train loss: 4.00605222, valid loss: 1774.36709042
Iter-147, train loss: 3.99479327, valid loss: 1760.77270280
Iter-148, train loss: 3.98371856, valid loss: 1750.52649665
Iter-149, train loss: 3.97284379, valid loss: 1742.11806493
Iter-150, train loss: 3.96218513, valid loss: 1734.55040799
Iter-151, train loss: 3.95175844, valid loss: 1725.54831023
Iter-152, train loss: 3.94157850, valid loss: 1718.69118173
Iter-153, train loss: 3.93165835, valid loss: 1711.20385416
Iter-154, train loss: 3.92200871, valid loss: 1703.04252203
Iter-155, train loss: 3.91263754, valid loss: 1692.80286255
Iter-156, train loss: 3.90354975, valid loss: 1684.47686303
Iter-157, train loss: 3.89474711, valid loss: 1678.07430739
Iter-158, train loss: 3.88622818, valid loss: 1671.94146044
Iter-159, train loss: 3.87798853, valid loss: 1664.61655870
Iter-160, train loss: 3.87002087, valid loss: 1660.14394613
Iter-161, train loss: 3.86231547, valid loss: 1650.63026825
Iter-162, train loss: 3.85486044, valid loss: 1650.08670800
Iter-163, train loss: 3.84764217, valid loss: 1643.90615055
Iter-164, train loss: 3.84064572, valid loss: 1639.22328336
Iter-165, train loss: 3.83385524, valid loss: 1639.08673289
Iter-166, train loss: 3.82725432, valid loss: 1630.46977403
Iter-167, train loss: 3.82082638, valid loss: 1625.62420690
Iter-168, train loss: 3.81455494, valid loss: 1623.19555971
Iter-169, train loss: 3.80842390, valid loss: 1616.02907209
Iter-170, train loss: 3.80241778, valid loss: 1609.95681616
Iter-171, train loss: 3.79652186, valid loss: 1612.05634294
Iter-172, train loss: 3.79072234, valid loss: 1598.09847610
Iter-173, train loss: 3.78500644, valid loss: 1586.09615286
Iter-174, train loss: 3.77936241, valid loss: 1590.30858895
Iter-175, train loss: 3.77377960, valid loss: 1591.82632544
Iter-176, train loss: 3.76824843, valid loss: 1592.47105688
Iter-177, train loss: 3.76276039, valid loss: 1591.68425821
Iter-178, train loss: 3.75730795, valid loss: 1589.03569878
Iter-179, train loss: 3.75188454, valid loss: 1583.71650195
Iter-180, train loss: 3.74648446, valid loss: 1565.03501803
Iter-181, train loss: 3.74110280, valid loss: 1550.82939841
Iter-182, train loss: 3.73573537, valid loss: 1545.47807782
Iter-183, train loss: 3.73037860, valid loss: 1539.18877321
Iter-184, train loss: 3.72502945, valid loss: 1526.09309811
Iter-185, train loss: 3.71968536, valid loss: 1525.73307364
Iter-186, train loss: 3.71434412, valid loss: 1524.65256508
Iter-187, train loss: 3.70900385, valid loss: 1526.11151878
Iter-188, train loss: 3.70366288, valid loss: 1524.09682068
Iter-189, train loss: 3.69831975, valid loss: 1516.99494380
Iter-190, train loss: 3.69297306, valid loss: 1520.37485822
Iter-191, train loss: 3.68762153, valid loss: 1518.55884951
Iter-192, train loss: 3.68226388, valid loss: 1521.70542424
Iter-193, train loss: 3.67689880, valid loss: 1513.25594717
Iter-194, train loss: 3.67152495, valid loss: 1084.57896388
Iter-195, train loss: 3.66614094, valid loss: 950.27743757
Iter-196, train loss: 3.66074526, valid loss: 870.67807030
Iter-197, train loss: 3.65533631, valid loss: 778.43551016
Iter-198, train loss: 3.64991239, valid loss: 1020.37839647
Iter-199, train loss: 3.64447165, valid loss: 806.49897170
Iter-200, train loss: 3.63901217, valid loss: 915.85733372
Iter-201, train loss: 3.63353188, valid loss: 815.90165719
Iter-202, train loss: 3.62802862, valid loss: 1183.18626914
Iter-203, train loss: 3.62250013, valid loss: 1308.15796592
Iter-204, train loss: 3.61694407, valid loss: 1022.47263547
Iter-205, train loss: 3.61135803, valid loss: 1293.47471639
Iter-206, train loss: 3.60573956, valid loss: 1499.37794844
Iter-207, train loss: 3.60008617, valid loss: 1728.04160066
Iter-208, train loss: 3.59439537, valid loss: 1614.42247564
Iter-209, train loss: 3.58866471, valid loss: 1469.30367965
Iter-210, train loss: 3.58289178, valid loss: 1691.10845309
Iter-211, train loss: 3.57707423, valid loss: 1580.85791590
Iter-212, train loss: 3.57120986, valid loss: 1513.52250855
Iter-213, train loss: 3.56529658, valid loss: 1741.67340253
Iter-214, train loss: 3.55933249, valid loss: 1634.03056755
Iter-215, train loss: 3.55331589, valid loss: 1525.34650457
Iter-216, train loss: 3.54724532, valid loss: 1367.65423571
Iter-217, train loss: 3.54111958, valid loss: 1365.58059804
Iter-218, train loss: 3.53493779, valid loss: 1427.05570184
Iter-219, train loss: 3.52869937, valid loss: 1365.73471822
Iter-220, train loss: 3.52240412, valid loss: 1349.04257551
Iter-221, train loss: 3.51605219, valid loss: 1381.20332047
Iter-222, train loss: 3.50964414, valid loss: 1411.34121066
Iter-223, train loss: 3.50318093, valid loss: 1464.24905991
Iter-224, train loss: 3.49666396, valid loss: 1519.48908657
Iter-225, train loss: 3.49009504, valid loss: 1521.80241624
Iter-226, train loss: 3.48347641, valid loss: 1524.48173650
Iter-227, train loss: 3.47681077, valid loss: 1527.60532456
Iter-228, train loss: 3.47010120, valid loss: 1530.86706024
Iter-229, train loss: 3.46335122, valid loss: 1533.61091458
Iter-230, train loss: 3.45656475, valid loss: 1449.99110263
Iter-231, train loss: 3.44974605, valid loss: 1431.59077721
Iter-232, train loss: 3.44289976, valid loss: 1430.56353274
Iter-233, train loss: 3.43603083, valid loss: 1443.81056857
Iter-234, train loss: 3.42914449, valid loss: 1472.76771249
Iter-235, train loss: 3.42224624, valid loss: 1494.90676766
Iter-236, train loss: 3.41534177, valid loss: 1497.85472510
Iter-237, train loss: 3.40843694, valid loss: 1501.01096049
Iter-238, train loss: 3.40153777, valid loss: 1503.94644743
Iter-239, train loss: 3.39465034, valid loss: 1506.72649006
Iter-240, train loss: 3.38778078, valid loss: 1509.41323122
Iter-241, train loss: 3.38093524, valid loss: 1511.97989702
Iter-242, train loss: 3.37411982, valid loss: 1514.35712694
Iter-243, train loss: 3.36734052, valid loss: 1516.54590003
Iter-244, train loss: 3.36060328, valid loss: 1518.68722463
Iter-245, train loss: 3.35391383, valid loss: 1520.95950441
Iter-246, train loss: 3.34727775, valid loss: 1523.44565502
Iter-247, train loss: 3.34070041, valid loss: 1526.09800987
Iter-248, train loss: 3.33418694, valid loss: 1528.76397711
Iter-249, train loss: 3.32774220, valid loss: 1531.28425907
Iter-250, train loss: 3.32137077, valid loss: 1533.59664878
Iter-251, train loss: 3.31507695, valid loss: 1536.52938106
Iter-252, train loss: 3.30886474, valid loss: 1417.85036882
Iter-253, train loss: 3.30273781, valid loss: 1453.30368393
Iter-254, train loss: 3.29669953, valid loss: 1465.20984018
Iter-255, train loss: 3.29075292, valid loss: 1469.36616217
Iter-256, train loss: 3.28490073, valid loss: 1472.78360764
Iter-257, train loss: 3.27914536, valid loss: 1476.76615778
Iter-258, train loss: 3.27348891, valid loss: 1481.96904142
Iter-259, train loss: 3.26793319, valid loss: 1487.45688823
Iter-260, train loss: 3.26247971, valid loss: 1492.76473477
Iter-261, train loss: 3.25712972, valid loss: 1497.98719429
Iter-262, train loss: 3.25188419, valid loss: 1504.48001876
Iter-263, train loss: 3.24674384, valid loss: 1509.94431292
Iter-264, train loss: 3.24170917, valid loss: 1535.88130138
Iter-265, train loss: 3.23678045, valid loss: 1605.79972849
Iter-266, train loss: 3.23195773, valid loss: 1552.31450889
Iter-267, train loss: 3.22724091, valid loss: 1665.30772043
Iter-268, train loss: 3.22262967, valid loss: 1523.53485104
Iter-269, train loss: 3.21812356, valid loss: 1598.82530395
Iter-270, train loss: 3.21372199, valid loss: 1512.26379989
Iter-271, train loss: 3.20942423, valid loss: 1734.93906598
Iter-272, train loss: 3.20522942, valid loss: 1658.77161810
Iter-273, train loss: 3.20113663, valid loss: 1737.80648056
Iter-274, train loss: 3.19714482, valid loss: 1465.51328607
Iter-275, train loss: 3.19325289, valid loss: 1674.44796710
Iter-276, train loss: 3.18945966, valid loss: 1668.50041052
Iter-277, train loss: 3.18576389, valid loss: 1751.53211282
Iter-278, train loss: 3.18216432, valid loss: 1840.05180238
Iter-279, train loss: 3.17865964, valid loss: 1574.85195834
Iter-280, train loss: 3.17524852, valid loss: 1683.33417923
Iter-281, train loss: 3.17192960, valid loss: 1643.17741117
Iter-282, train loss: 3.16870153, valid loss: 1675.08927395
Iter-283, train loss: 3.16556292, valid loss: 1699.70593578
Iter-284, train loss: 3.16251243, valid loss: 1772.04454111
Iter-285, train loss: 3.15954868, valid loss: 1651.73242926
Iter-286, train loss: 3.15667034, valid loss: 1797.37088249
Iter-287, train loss: 3.15387605, valid loss: 1686.21173369
Iter-288, train loss: 3.15116451, valid loss: 1679.04205703
Iter-289, train loss: 3.14853442, valid loss: 1578.26046866
Iter-290, train loss: 3.14598450, valid loss: 1490.62861719
Iter-291, train loss: 3.14351350, valid loss: 1704.48620545
Iter-292, train loss: 3.14112018, valid loss: 1678.87757318
Iter-293, train loss: 3.13880336, valid loss: 1849.45831565
Iter-294, train loss: 3.13656185, valid loss: 1751.95335450
Iter-295, train loss: 3.13439449, valid loss: 1704.28162293
Iter-296, train loss: 3.13230016, valid loss: 1748.67934994
Iter-297, train loss: 3.13027775, valid loss: 1725.72571189
Iter-298, train loss: 3.12832617, valid loss: 1647.54264694
Iter-299, train loss: 3.12644435, valid loss: 1482.87983968
Iter-300, train loss: 3.12463124, valid loss: 1708.64356964
Out[9]:
<__main__.GRU at 0x7f44e9872390>