Iter-1, train loss: 25.75183218, valid loss: 3251.55888850
Iter-2, train loss: 19.89496242, valid loss: 2650.49710219
Iter-3, train loss: 17.30009100, valid loss: 2369.41167174
Iter-4, train loss: 15.74423721, valid loss: 2219.63527981
Iter-5, train loss: 14.49307876, valid loss: 1948.96943143
Iter-6, train loss: 13.43299689, valid loss: 2193.23326204
Iter-7, train loss: 12.54601288, valid loss: 2238.11466653
Iter-8, train loss: 11.80592516, valid loss: 2259.10775960
Iter-9, train loss: 11.18226387, valid loss: 2260.71253937
Iter-10, train loss: 10.64784783, valid loss: 2168.09310873
Iter-11, train loss: 10.18103999, valid loss: 1811.53883851
Iter-12, train loss: 9.76629906, valid loss: 1460.59102672
Iter-13, train loss: 9.39299821, valid loss: 1445.65931772
Iter-14, train loss: 9.05388355, valid loss: 1561.41871815
Iter-15, train loss: 8.74394194, valid loss: 1428.06672041
Iter-16, train loss: 8.45966161, valid loss: 1560.20480729
Iter-17, train loss: 8.19851673, valid loss: 1518.80209219
Iter-18, train loss: 7.95859249, valid loss: 1515.18365435
Iter-19, train loss: 7.73832197, valid loss: 1507.16550968
Iter-20, train loss: 7.53633691, valid loss: 1537.58550425
Iter-21, train loss: 7.35143665, valid loss: 1584.27219090
Iter-22, train loss: 7.18259253, valid loss: 1768.73724451
Iter-23, train loss: 7.02890220, valid loss: 1762.80149789
Iter-24, train loss: 6.88950691, valid loss: 1654.98594051
Iter-25, train loss: 6.76351978, valid loss: 1715.79114142
Iter-26, train loss: 6.64998778, valid loss: 1636.99936271
Iter-27, train loss: 6.54788849, valid loss: 1716.33000630
Iter-28, train loss: 6.45615327, valid loss: 1686.02807200
Iter-29, train loss: 6.37370391, valid loss: 1676.05768419
Iter-30, train loss: 6.29949019, valid loss: 1661.01784693
Iter-31, train loss: 6.23252024, valid loss: 1688.90716882
Iter-32, train loss: 6.17188111, valid loss: 1769.28939149
Iter-33, train loss: 6.11675027, valid loss: 1783.11062482
Iter-34, train loss: 6.06640042, valid loss: 1748.76015120
Iter-35, train loss: 6.02019965, valid loss: 1782.59525266
Iter-36, train loss: 5.97760889, valid loss: 1791.30897686
Iter-37, train loss: 5.93817745, valid loss: 1800.29452248
Iter-38, train loss: 5.90153753, valid loss: 1871.67518810
Iter-39, train loss: 5.86739804, valid loss: 1827.67430447
Iter-40, train loss: 5.83553747, valid loss: 1770.11681355
Iter-41, train loss: 5.80579569, valid loss: 1837.51401859
Iter-42, train loss: 5.77806387, valid loss: 1935.19762348
Iter-43, train loss: 5.75227224, valid loss: 1910.46330411
Iter-44, train loss: 5.72837559, valid loss: 1855.55129619
Iter-45, train loss: 5.70633808, valid loss: 1800.37794007
Iter-46, train loss: 5.68611937, valid loss: 1872.24481215
Iter-47, train loss: 5.66766469, valid loss: 1996.11952603
Iter-48, train loss: 5.65090010, valid loss: 1851.03800838
Iter-49, train loss: 5.63573288, valid loss: 1934.30627599
Iter-50, train loss: 5.62205534, valid loss: 1783.80787757
Iter-51, train loss: 5.60975011, valid loss: 1708.10195739
Iter-52, train loss: 5.59869524, valid loss: 1510.44896200
Iter-53, train loss: 5.58876818, valid loss: 1598.63237088
Iter-54, train loss: 5.57984848, valid loss: 1565.80703268
Iter-55, train loss: 5.57181936, valid loss: 1529.73408816
Iter-56, train loss: 5.56456831, valid loss: 1480.63468452
Iter-57, train loss: 5.55798736, valid loss: 1479.25651934
Iter-58, train loss: 5.55197293, valid loss: 1440.71433806
Iter-59, train loss: 5.54642573, valid loss: 1437.80637488
Iter-60, train loss: 5.54125070, valid loss: 1422.04778253
Iter-61, train loss: 5.53635706, valid loss: 1452.52074768
Iter-62, train loss: 5.53165854, valid loss: 1396.17934108
Iter-63, train loss: 5.52707369, valid loss: 1392.36812961
Iter-64, train loss: 5.52252630, valid loss: 1377.13717676
Iter-65, train loss: 5.51794587, valid loss: 1356.39568703
Iter-66, train loss: 5.51326795, valid loss: 1330.84582663
Iter-67, train loss: 5.50843453, valid loss: 1315.36727541
Iter-68, train loss: 5.50339418, valid loss: 1304.65470329
Iter-69, train loss: 5.49810220, valid loss: 1314.54157620
Iter-70, train loss: 5.49252049, valid loss: 1295.01731510
Iter-71, train loss: 5.48661741, valid loss: 1293.01253821
Iter-72, train loss: 5.48036740, valid loss: 1370.72527810
Iter-73, train loss: 5.47375064, valid loss: 1399.27824089
Iter-74, train loss: 5.46675256, valid loss: 1388.15737491
Iter-75, train loss: 5.45936329, valid loss: 1380.66736040
Iter-76, train loss: 5.45157718, valid loss: 1400.05614911
Iter-77, train loss: 5.44339225, valid loss: 1456.74267801
Iter-78, train loss: 5.43480966, valid loss: 1408.56258213
Iter-79, train loss: 5.42583328, valid loss: 1499.09156919
Iter-80, train loss: 5.41646919, valid loss: 1295.89420227
Iter-81, train loss: 5.40672536, valid loss: 1675.50746352
Iter-82, train loss: 5.39661123, valid loss: 1866.77945415
Iter-83, train loss: 5.38613744, valid loss: 1903.73603714
Iter-84, train loss: 5.37531554, valid loss: 1799.01274491
Iter-85, train loss: 5.36415774, valid loss: 6627.08324742
Iter-86, train loss: 5.35267671, valid loss: 6888.80291487
Iter-87, train loss: 5.34088536, valid loss: 2225.98949501
Iter-88, train loss: 5.32879666, valid loss: 1071.12934965
Iter-89, train loss: 5.31642352, valid loss: 1367.14965274
Iter-90, train loss: 5.30377861, valid loss: 1087.58397617
Iter-91, train loss: 5.29087427, valid loss: 1554.78165636
Iter-92, train loss: 5.27772242, valid loss: 6975.23690341
Iter-93, train loss: 5.26433448, valid loss: 1016.27121894
Iter-94, train loss: 5.25072138, valid loss: 7256.27755678
Iter-95, train loss: 5.23689348, valid loss: 7316.30740555
Iter-96, train loss: 5.22286065, valid loss: 7352.24672735
Iter-97, train loss: 5.20863222, valid loss: 7384.63887976
Iter-98, train loss: 5.19421708, valid loss: 7415.35679798
Iter-99, train loss: 5.17962365, valid loss: 7445.01505938
Iter-100, train loss: 5.16485997, valid loss: 7473.89293179
Iter-101, train loss: 5.14993367, valid loss: 7502.14079840
Iter-102, train loss: 5.13485200, valid loss: 7529.84778191
Iter-103, train loss: 5.11962182, valid loss: 7557.06861991
Iter-104, train loss: 5.10424959, valid loss: 7583.83543101
Iter-105, train loss: 5.08874128, valid loss: 7610.16273153
Iter-106, train loss: 5.07310238, valid loss: 7636.04858749
Iter-107, train loss: 5.05733782, valid loss: 7661.47235515
Iter-108, train loss: 5.04145188, valid loss: 7686.38726237
Iter-109, train loss: 5.02544819, valid loss: 7710.70132136
Iter-110, train loss: 5.00932961, valid loss: 7734.22327054
Iter-111, train loss: 4.99309825, valid loss: 7756.46483088
Iter-112, train loss: 4.97675543, valid loss: 7775.36802314
Iter-113, train loss: 4.96030167, valid loss: 1437.80451852
Iter-114, train loss: 4.94373675, valid loss: 7552.88898467
Iter-115, train loss: 4.92705972, valid loss: 7586.59195485
Iter-116, train loss: 4.91026902, valid loss: 7609.30196614
Iter-117, train loss: 4.89336256, valid loss: 1394.61566955
Iter-118, train loss: 4.87633786, valid loss: 1413.44778417
Iter-119, train loss: 4.85919219, valid loss: 1427.27621859
Iter-120, train loss: 4.84192271, valid loss: 1415.88308621
Iter-121, train loss: 4.82452665, valid loss: 1430.99219644
Iter-122, train loss: 4.80700144, valid loss: 1410.41629171
Iter-123, train loss: 4.78934488, valid loss: 1407.28243317
Iter-124, train loss: 4.77155523, valid loss: 1419.83426994
Iter-125, train loss: 4.75363135, valid loss: 1402.29455684
Iter-126, train loss: 4.73557273, valid loss: 1363.23452544
Iter-127, train loss: 4.71737957, valid loss: 1538.05638252
Iter-128, train loss: 4.69905281, valid loss: 1414.25334153
Iter-129, train loss: 4.68059405, valid loss: 1540.04558094
Iter-130, train loss: 4.66200562, valid loss: 1448.14560994
Iter-131, train loss: 4.64329042, valid loss: 1442.12813169
Iter-132, train loss: 4.62445194, valid loss: 1490.56132154
Iter-133, train loss: 4.60549411, valid loss: 1487.81435909
Iter-134, train loss: 4.58642126, valid loss: 1389.71866428
Iter-135, train loss: 4.56723801, valid loss: 1485.76314104
Iter-136, train loss: 4.54794920, valid loss: 1475.66495886
Iter-137, train loss: 4.52855982, valid loss: 1505.01866073
Iter-138, train loss: 4.50907495, valid loss: 1525.21009317
Iter-139, train loss: 4.48949972, valid loss: 1502.65527231
Iter-140, train loss: 4.46983929, valid loss: 1507.03682824
Iter-141, train loss: 4.45009886, valid loss: 1514.96956228
Iter-142, train loss: 4.43028367, valid loss: 1488.38781808
Iter-143, train loss: 4.41039904, valid loss: 1521.10719891
Iter-144, train loss: 4.39045045, valid loss: 1603.08464372
Iter-145, train loss: 4.37044355, valid loss: 1585.12372963
Iter-146, train loss: 4.35038426, valid loss: 1566.41308002
Iter-147, train loss: 4.33027887, valid loss: 1587.62817198
Iter-148, train loss: 4.31013401, valid loss: 1556.83930130
Iter-149, train loss: 4.28995683, valid loss: 1430.95112349
Iter-150, train loss: 4.26975492, valid loss: 1585.51031571
Iter-151, train loss: 4.24953645, valid loss: 1545.10349539
Iter-152, train loss: 4.22931008, valid loss: 1564.70786118
Iter-153, train loss: 4.20908505, valid loss: 1509.48594159
Iter-154, train loss: 4.18887107, valid loss: 1528.78778513
Iter-155, train loss: 4.16867835, valid loss: 1577.65551334
Iter-156, train loss: 4.14851753, valid loss: 1440.03613572
Iter-157, train loss: 4.12839957, valid loss: 1549.07295526
Iter-158, train loss: 4.10833578, valid loss: 1523.40453755
Iter-159, train loss: 4.08833764, valid loss: 1500.13483211
Iter-160, train loss: 4.06841683, valid loss: 1538.16096603
Iter-161, train loss: 4.04858506, valid loss: 1488.95960489
Iter-162, train loss: 4.02885406, valid loss: 1424.91803315
Iter-163, train loss: 4.00923548, valid loss: 1589.25066231
Iter-164, train loss: 3.98974081, valid loss: 1555.85829990
Iter-165, train loss: 3.97038136, valid loss: 6860.82337518
Iter-166, train loss: 3.95116814, valid loss: 1479.33261332
Iter-167, train loss: 3.93211183, valid loss: 1504.06717480
Iter-168, train loss: 3.91322274, valid loss: 1584.22500992
Iter-169, train loss: 3.89451071, valid loss: 1571.29130556
Iter-170, train loss: 3.87598512, valid loss: 1485.26301531
Iter-171, train loss: 3.85765479, valid loss: 1586.34897125
Iter-172, train loss: 3.83952800, valid loss: 1528.18856584
Iter-173, train loss: 3.82161234, valid loss: 1447.21247630
Iter-174, train loss: 3.80391499, valid loss: 6021.20268909
Iter-175, train loss: 3.78644192, valid loss: 1429.46210470
Iter-176, train loss: 3.76919961, valid loss: 1543.33756173
Iter-177, train loss: 3.75219136, valid loss: 1530.80514501
Iter-178, train loss: 3.73542494, valid loss: 1523.81628092
Iter-179, train loss: 3.71889660, valid loss: 1384.71544181
Iter-180, train loss: 3.70262484, valid loss: 6002.13405320
Iter-181, train loss: 3.68657840, valid loss: 1408.34170107
Iter-182, train loss: 3.67083125, valid loss: 5849.41800790
Iter-183, train loss: 3.65522650, valid loss: 1478.10476330
Iter-184, train loss: 3.64011137, valid loss: 1681.02634320
Iter-185, train loss: 3.62471698, valid loss: 7261.18797718
Iter-186, train loss: 3.61075983, valid loss: 1497.57847843
Iter-187, train loss: 3.59437187, valid loss: 1518.38737086
Iter-188, train loss: 3.58433018, valid loss: 1498.44691319
Iter-189, train loss: 3.56058663, valid loss: 1520.73566753
Iter-190, train loss: 3.56911441, valid loss: 1660.35647877
Iter-191, train loss: 3.50760773, valid loss: 8352.64875579
Iter-192, train loss: 3.58832462, valid loss: 1591.86394491
Iter-193, train loss: 3.47610453, valid loss: 8467.66252851
Iter-194, train loss: 3.56845086, valid loss: 1514.16390950
Iter-195, train loss: 3.47553601, valid loss: 6363.52309268
Iter-196, train loss: 3.50118459, valid loss: 1568.48047619
Iter-197, train loss: 3.41622413, valid loss: 1594.34691908
Iter-198, train loss: 3.50882342, valid loss: 1694.06265537
Iter-199, train loss: 3.41052844, valid loss: 8463.39676880
Iter-200, train loss: 3.47222533, valid loss: 1702.07528215
Iter-201, train loss: 3.37933130, valid loss: 8467.05282750
Iter-202, train loss: 3.45811575, valid loss: 1734.00891946
Iter-203, train loss: 3.36383311, valid loss: 8467.40980630
Iter-204, train loss: 3.43501014, valid loss: 1604.34693548
Iter-205, train loss: 3.34446706, valid loss: 8468.10619548
Iter-206, train loss: 3.41693819, valid loss: 1605.85833255
Iter-207, train loss: 3.32759063, valid loss: 8472.15083690
Iter-208, train loss: 3.39863164, valid loss: 1714.90684258
Iter-209, train loss: 3.31111499, valid loss: 8480.53179525
Iter-210, train loss: 3.38102474, valid loss: 1693.78943174
Iter-211, train loss: 3.29520293, valid loss: 8490.88894264
Iter-212, train loss: 3.36394489, valid loss: 1732.97263188
Iter-213, train loss: 3.27979972, valid loss: 8494.99087569
Iter-214, train loss: 3.34730604, valid loss: 1756.16653383
Iter-215, train loss: 3.26491005, valid loss: 8506.04601605
Iter-216, train loss: 3.33109762, valid loss: 1775.46527340
Iter-217, train loss: 3.25056317, valid loss: 1993.38586071
Iter-218, train loss: 3.31532350, valid loss: 1713.12944775
Iter-219, train loss: 3.23679919, valid loss: 1592.67099455
Iter-220, train loss: 3.29999639, valid loss: 1722.98811897
Iter-221, train loss: 3.22366103, valid loss: 1681.47196815
Iter-222, train loss: 3.28513419, valid loss: 1725.14957950
Iter-223, train loss: 3.21118978, valid loss: 1617.09321067
Iter-224, train loss: 3.27075661, valid loss: 1620.88730268
Iter-225, train loss: 3.19942256, valid loss: 1631.85875037
Iter-226, train loss: 3.25688323, valid loss: 1758.12795197
Iter-227, train loss: 3.18839136, valid loss: 1767.16582708
Iter-228, train loss: 3.24353235, valid loss: 1695.28614142
Iter-229, train loss: 3.17812242, valid loss: 1652.41439237
Iter-230, train loss: 3.23071945, valid loss: 8339.94248920
Iter-231, train loss: 3.16863511, valid loss: 1764.78540823
Iter-232, train loss: 3.21845428, valid loss: 1642.24547737
Iter-233, train loss: 3.15993873, valid loss: 1760.67221099
Iter-234, train loss: 3.20673486, valid loss: 8798.32739715
Iter-235, train loss: 3.15202224, valid loss: 1731.29644219
Iter-236, train loss: 3.19553659, valid loss: 3943.53265423
Iter-237, train loss: 3.14482667, valid loss: 1793.03755502
Iter-238, train loss: 3.18479416, valid loss: 3965.85241683
Iter-239, train loss: 3.13818402, valid loss: 1825.94052233
Iter-240, train loss: 3.17437809, valid loss: 4136.32292189
Iter-241, train loss: 3.13172131, valid loss: 1960.32634094
Iter-242, train loss: 3.16408543, valid loss: 1674.88445914
Iter-243, train loss: 3.12481528, valid loss: 1829.71257970
Iter-244, train loss: 3.15370323, valid loss: 1669.30071132
Iter-245, train loss: 3.11680850, valid loss: 1901.58443122
Iter-246, train loss: 3.14316326, valid loss: 1772.35203988
Iter-247, train loss: 3.10749647, valid loss: 1861.40080783
Iter-248, train loss: 3.13251877, valid loss: 1859.31925590
Iter-249, train loss: 3.09733883, valid loss: 1954.83835444
Iter-250, train loss: 3.12149083, valid loss: 1809.23067049
Iter-251, train loss: 3.08697680, valid loss: 9150.52008424
Iter-252, train loss: 3.10943680, valid loss: 1940.15439010
Iter-253, train loss: 3.07654267, valid loss: 9143.28701788
Iter-254, train loss: 3.09640964, valid loss: 8123.46327861
Iter-255, train loss: 3.06570949, valid loss: 9147.75663209
Iter-256, train loss: 3.08354784, valid loss: 1904.31090658
Iter-257, train loss: 3.05453177, valid loss: 9151.87503264
Iter-258, train loss: 3.07118724, valid loss: 1908.35522097
Iter-259, train loss: 3.04339084, valid loss: 9157.59446522
Iter-260, train loss: 3.05738903, valid loss: 2022.76000114
Iter-261, train loss: 3.03218709, valid loss: 9166.81844611
Iter-262, train loss: 3.04212285, valid loss: 1877.97658706
Iter-263, train loss: 3.02083391, valid loss: 9175.14937289
Iter-264, train loss: 3.02891474, valid loss: 1896.02758156
Iter-265, train loss: 3.00966618, valid loss: 9177.36076728
Iter-266, train loss: 3.01826856, valid loss: 1953.27492659
Iter-267, train loss: 2.99746115, valid loss: 9180.33452655
Iter-268, train loss: 3.00151776, valid loss: 1815.81673316
Iter-269, train loss: 2.98447450, valid loss: 9191.98871114
Iter-270, train loss: 2.98278113, valid loss: 1854.34812094
Iter-271, train loss: 2.97414007, valid loss: 9197.49076413
Iter-272, train loss: 2.97590951, valid loss: 1854.67390128
Iter-273, train loss: 2.97021082, valid loss: 2111.39538121
Iter-274, train loss: 2.97739146, valid loss: 2005.67113540
Iter-275, train loss: 2.94431525, valid loss: 2316.35793846
Iter-276, train loss: 2.94295709, valid loss: 1851.36510947
Iter-277, train loss: 2.95553185, valid loss: 2063.17577818
Iter-278, train loss: 2.93861569, valid loss: 2169.30575119
Iter-279, train loss: 2.93738442, valid loss: 1985.89577855
Iter-280, train loss: 2.92540408, valid loss: 2044.16068742
Iter-281, train loss: 2.96497621, valid loss: 2212.39933713
Iter-282, train loss: 2.99116806, valid loss: 8519.08002502
Iter-283, train loss: 2.90598182, valid loss: 2720.71065760
Iter-284, train loss: 2.88027684, valid loss: 9202.62559468
Iter-285, train loss: 2.91320684, valid loss: 1923.83714398
Iter-286, train loss: 2.92544996, valid loss: 2497.23209434
Iter-287, train loss: 2.91496370, valid loss: 1982.47526056
Iter-288, train loss: 2.84630942, valid loss: 2485.71994367
Iter-289, train loss: 2.84492361, valid loss: 9189.93400922
Iter-290, train loss: 2.89251590, valid loss: 1938.94265134
Iter-291, train loss: 2.87723757, valid loss: 8904.48168508
Iter-292, train loss: 2.85493706, valid loss: 1999.95157377
Iter-293, train loss: 2.81116446, valid loss: 9208.36240815
Iter-294, train loss: 2.81514019, valid loss: 9187.15293589
Iter-295, train loss: 2.86358616, valid loss: 1952.35831106
Iter-296, train loss: 2.83592701, valid loss: 2446.73299612
Iter-297, train loss: 2.81536224, valid loss: 1724.98188058
Iter-298, train loss: 2.78237868, valid loss: 2232.57781344
Iter-299, train loss: 2.78553534, valid loss: 9196.64131857
Iter-300, train loss: 2.83349271, valid loss: 2118.35624435
Out[9]:
<__main__.GRU at 0x7f19e11e58d0>