Iter-1, train loss: 49.12238400, valid loss: 632.88334268
Iter-2, train loss: 44.73464075, valid loss: 632.73692080
Iter-3, train loss: 41.72123433, valid loss: 632.65475590
Iter-4, train loss: 39.16055403, valid loss: 632.67315929
Iter-5, train loss: 36.91749477, valid loss: 632.76823888
Iter-6, train loss: 35.01899626, valid loss: 632.93258421
Iter-7, train loss: 33.47260176, valid loss: 633.23042928
Iter-8, train loss: 32.18525552, valid loss: 633.75773432
Iter-9, train loss: 31.04521832, valid loss: 634.53655424
Iter-10, train loss: 29.99458687, valid loss: 635.51743283
Iter-11, train loss: 29.00795537, valid loss: 636.63826053
Iter-12, train loss: 28.06882097, valid loss: 637.86065546
Iter-13, train loss: 27.16188137, valid loss: 639.19594803
Iter-14, train loss: 26.27056742, valid loss: 640.73275606
Iter-15, train loss: 25.37503866, valid loss: 642.69033015
Iter-16, train loss: 24.44904562, valid loss: 645.57090041
Iter-17, train loss: 23.45374313, valid loss: 650.62210302
Iter-18, train loss: 22.32487328, valid loss: 661.81931091
Iter-19, train loss: 20.99872045, valid loss: 697.37654114
Iter-20, train loss: 19.74850374, valid loss: 800.94966419
Iter-21, train loss: 18.86225932, valid loss: 889.70705998
Iter-22, train loss: 18.12204504, valid loss: 923.40181109
Iter-23, train loss: 17.49575868, valid loss: 949.65253771
Iter-24, train loss: 16.95580388, valid loss: 974.85208721
Iter-25, train loss: 16.48206235, valid loss: 999.09495700
Iter-26, train loss: 16.06025927, valid loss: 1022.10974603
Iter-27, train loss: 15.67870128, valid loss: 1044.16029515
Iter-28, train loss: 15.32687186, valid loss: 1065.92562755
Iter-29, train loss: 14.99574709, valid loss: 1088.28724640
Iter-30, train loss: 14.67828827, valid loss: 1111.95438878
Iter-31, train loss: 14.36962318, valid loss: 1137.12394504
Iter-32, train loss: 14.06680869, valid loss: 1163.44074191
Iter-33, train loss: 13.76837672, valid loss: 1190.29382810
Iter-34, train loss: 13.47393571, valid loss: 1217.20051748
Iter-35, train loss: 13.18383398, valid loss: 1244.00301790
Iter-36, train loss: 12.89880415, valid loss: 1270.80741760
Iter-37, train loss: 12.61956911, valid loss: 1297.76505787
Iter-38, train loss: 12.34645531, valid loss: 1324.86444607
Iter-39, train loss: 12.07912693, valid loss: 1351.86465807
Iter-40, train loss: 11.81654801, valid loss: 1378.35688112
Iter-41, train loss: 11.55716970, valid loss: 1403.83558957
Iter-42, train loss: 11.29931467, valid loss: 1427.77754530
Iter-43, train loss: 11.04172318, valid loss: 1449.78655246
Iter-44, train loss: 10.78409669, valid loss: 1469.68635834
Iter-45, train loss: 10.52745094, valid loss: 1487.51677065
Iter-46, train loss: 10.27416088, valid loss: 1503.47828136
Iter-47, train loss: 10.02758413, valid loss: 1517.85534927
Iter-48, train loss: 9.79126720, valid loss: 1530.95536400
Iter-49, train loss: 9.56798628, valid loss: 1543.07672575
Iter-50, train loss: 9.35905694, valid loss: 1554.50138869
Iter-51, train loss: 9.16423316, valid loss: 1565.49669752
Iter-52, train loss: 8.98214385, valid loss: 1576.31112289
Iter-53, train loss: 8.81092386, valid loss: 1587.15956018
Iter-54, train loss: 8.64871288, valid loss: 1598.20449663
Iter-55, train loss: 8.49390276, valid loss: 1609.54031888
Iter-56, train loss: 8.34518260, valid loss: 1621.18262187
Iter-57, train loss: 8.20147924, valid loss: 1633.06000528
Iter-58, train loss: 8.06186427, valid loss: 1645.00501306
Iter-59, train loss: 7.92546171, valid loss: 1656.74220852
Iter-60, train loss: 7.79136834, valid loss: 1667.87323934
Iter-61, train loss: 7.65859207, valid loss: 1677.85967061
Iter-62, train loss: 7.52601430, valid loss: 1686.00240698
Iter-63, train loss: 7.39238412, valid loss: 1691.40684183
Iter-64, train loss: 7.25635469, valid loss: 1692.87894136
Iter-65, train loss: 7.11657368, valid loss: 1688.58368061
Iter-66, train loss: 6.97183983, valid loss: 1678.11005716
Iter-67, train loss: 6.82133360, valid loss: 1684.67682986
Iter-68, train loss: 6.66491315, valid loss: 1713.53486655
Iter-69, train loss: 6.50343541, valid loss: 1779.71249878
Iter-70, train loss: 6.33901965, valid loss: 1825.58285108
Iter-71, train loss: 6.17513260, valid loss: 1845.43629163
Iter-72, train loss: 6.01636804, valid loss: 1862.97390013
Iter-73, train loss: 5.86784190, valid loss: 1875.41611539
Iter-74, train loss: 5.73424800, valid loss: 1849.23190872
Iter-75, train loss: 5.61881231, valid loss: 1849.33194003
Iter-76, train loss: 5.52255207, valid loss: 1847.51857091
Iter-77, train loss: 5.44420788, valid loss: 1873.12432324
Iter-78, train loss: 5.38089072, valid loss: 1800.04479703
Iter-79, train loss: 5.32908813, valid loss: 1764.80053457
Iter-80, train loss: 5.28555165, valid loss: 1728.43000629
Iter-81, train loss: 5.24778811, valid loss: 1730.31463312
Iter-82, train loss: 5.21414545, valid loss: 1694.20374871
Iter-83, train loss: 5.18363916, valid loss: 1687.18147713
Iter-84, train loss: 5.15569738, valid loss: 1685.44374727
Iter-85, train loss: 5.12995209, valid loss: 1682.49514624
Iter-86, train loss: 5.10612186, valid loss: 1643.64682800
Iter-87, train loss: 5.08396911, valid loss: 1596.13915255
Iter-88, train loss: 5.06329497, valid loss: 1639.94631051
Iter-89, train loss: 5.04394361, valid loss: 1677.58700393
Iter-90, train loss: 5.02580410, valid loss: 1661.47801612
Iter-91, train loss: 5.00880769, valid loss: 1723.57971835
Iter-92, train loss: 4.99292238, valid loss: 1714.65757940
Iter-93, train loss: 4.97814664, valid loss: 1672.44007578
Iter-94, train loss: 4.96450290, valid loss: 1700.97644536
Iter-95, train loss: 4.95203078, valid loss: 1603.81011539
Iter-96, train loss: 4.94077976, valid loss: 1576.50271807
Iter-97, train loss: 4.93080120, valid loss: 1642.16923794
Iter-98, train loss: 4.92213995, valid loss: 1588.37482551
Iter-99, train loss: 4.91482630, valid loss: 1595.82456251
Iter-100, train loss: 4.90886880, valid loss: 1656.85459420
Iter-101, train loss: 4.90424908, valid loss: 1583.78060922
Iter-102, train loss: 4.90091902, valid loss: 1674.27726031
Iter-103, train loss: 4.89880055, valid loss: 1624.76204107
Iter-104, train loss: 4.89778812, valid loss: 1694.83462487
Iter-105, train loss: 4.89775321, valid loss: 1603.72703402
Iter-106, train loss: 4.89855037, valid loss: 1553.12775693
Iter-107, train loss: 4.90002393, valid loss: 1529.52317670
Iter-108, train loss: 4.90201469, valid loss: 1664.50424361
Iter-109, train loss: 4.90436594, valid loss: 1470.87788587
Iter-110, train loss: 4.90692839, valid loss: 1565.47436672
Iter-111, train loss: 4.90956385, valid loss: 1537.46483145
Iter-112, train loss: 4.91214751, valid loss: 1638.14495854
Iter-113, train loss: 4.91456909, valid loss: 1593.96333094
Iter-114, train loss: 4.91673290, valid loss: 1565.31504218
Iter-115, train loss: 4.91855729, valid loss: 1661.59564749
Iter-116, train loss: 4.91997345, valid loss: 1692.65649279
Iter-117, train loss: 4.92092411, valid loss: 1645.94196629
Iter-118, train loss: 4.92136211, valid loss: 1595.35210790
Iter-119, train loss: 4.92124915, valid loss: 1901.18725387
Iter-120, train loss: 4.92055465, valid loss: 2105.94122084
Iter-121, train loss: 4.91925501, valid loss: 2008.27517199
Iter-122, train loss: 4.91733301, valid loss: 1910.66071366
Iter-123, train loss: 4.91477747, valid loss: 2216.48283224
Iter-124, train loss: 4.91158306, valid loss: 2205.13601537
Iter-125, train loss: 4.90775019, valid loss: 2193.63962115
Iter-126, train loss: 4.90328490, valid loss: 2177.51447943
Iter-127, train loss: 4.89819872, valid loss: 2184.92999726
Iter-128, train loss: 4.89250844, valid loss: 2177.45787960
Iter-129, train loss: 4.88623579, valid loss: 1454.02583309
Iter-130, train loss: 4.87940705, valid loss: 2058.53402452
Iter-131, train loss: 4.87205254, valid loss: 2050.30114352
Iter-132, train loss: 4.86420602, valid loss: 1639.38335534
Iter-133, train loss: 4.85590407, valid loss: 1617.86948903
Iter-134, train loss: 4.84718544, valid loss: 1568.19337210
Iter-135, train loss: 4.83809034, valid loss: 1459.19216529
Iter-136, train loss: 4.82865979, valid loss: 1329.06101088
Iter-137, train loss: 4.81893502, valid loss: 1527.21365108
Iter-138, train loss: 4.80895687, valid loss: 1399.18710278
Iter-139, train loss: 4.79876529, valid loss: 1262.09846745
Iter-140, train loss: 4.78839894, valid loss: 1268.09416448
Iter-141, train loss: 4.77789480, valid loss: 1454.28435729
Iter-142, train loss: 4.76728794, valid loss: 1524.02440503
Iter-143, train loss: 4.75661130, valid loss: 1132.91259235
Iter-144, train loss: 4.74589556, valid loss: 1363.87162997
Iter-145, train loss: 4.73516909, valid loss: 1166.51698313
Iter-146, train loss: 4.72445786, valid loss: 1038.43085842
Iter-147, train loss: 4.71378552, valid loss: 1253.26774096
Iter-148, train loss: 4.70317340, valid loss: 1023.05038067
Iter-149, train loss: 4.69264054, valid loss: 1246.24072855
Iter-150, train loss: 4.68220381, valid loss: 1052.87615827
Iter-151, train loss: 4.67187799, valid loss: 1253.50815784
Iter-152, train loss: 4.66167580, valid loss: 1134.37377003
Iter-153, train loss: 4.65160809, valid loss: 1090.50553910
Iter-154, train loss: 4.64168384, valid loss: 889.40431921
Iter-155, train loss: 4.63191036, valid loss: 929.08202443
Iter-156, train loss: 4.62229334, valid loss: 923.50160520
Iter-157, train loss: 4.61283700, valid loss: 895.66222556
Iter-158, train loss: 4.60354418, valid loss: 895.11061707
Iter-159, train loss: 4.59441648, valid loss: 881.72111656
Iter-160, train loss: 4.58545436, valid loss: 851.26335053
Iter-161, train loss: 4.57665731, valid loss: 842.75963794
Iter-162, train loss: 4.56802390, valid loss: 835.54474342
Iter-163, train loss: 4.55955194, valid loss: 803.30961503
Iter-164, train loss: 4.55123862, valid loss: 776.74614966
Iter-165, train loss: 4.54308054, valid loss: 754.29283456
Iter-166, train loss: 4.53507390, valid loss: 736.62539552
Iter-167, train loss: 4.52721453, valid loss: 722.11300906
Iter-168, train loss: 4.51949801, valid loss: 688.97378520
Iter-169, train loss: 4.51191977, valid loss: 657.73339456
Iter-170, train loss: 4.50447509, valid loss: 648.92098233
Iter-171, train loss: 4.49715926, valid loss: 648.45099222
Iter-172, train loss: 4.48996756, valid loss: 648.82802920
Iter-173, train loss: 4.48289534, valid loss: 649.44667490
Iter-174, train loss: 4.47593807, valid loss: 649.61648430
Iter-175, train loss: 4.46909133, valid loss: 651.76580712
Iter-176, train loss: 4.46235090, valid loss: 658.00379558
Iter-177, train loss: 4.45571271, valid loss: 687.00287833
Iter-178, train loss: 4.44917291, valid loss: 704.38344217
Iter-179, train loss: 4.44272786, valid loss: 715.61555088
Iter-180, train loss: 4.43637413, valid loss: 718.91255095
Iter-181, train loss: 4.43010849, valid loss: 730.19969266
Iter-182, train loss: 4.42392796, valid loss: 740.91181982
Iter-183, train loss: 4.41782972, valid loss: 742.32325861
Iter-184, train loss: 4.41181120, valid loss: 782.50346171
Iter-185, train loss: 4.40586998, valid loss: 777.35522682
Iter-186, train loss: 4.40000385, valid loss: 785.73140625
Iter-187, train loss: 4.39421076, valid loss: 796.75265880
Iter-188, train loss: 4.38848881, valid loss: 809.84463169
Iter-189, train loss: 4.38283626, valid loss: 814.23931512
Iter-190, train loss: 4.37725149, valid loss: 794.84769445
Iter-191, train loss: 4.37173300, valid loss: 779.41804088
Iter-192, train loss: 4.36627938, valid loss: 781.47993439
Iter-193, train loss: 4.36088934, valid loss: 785.23031015
Iter-194, train loss: 4.35556164, valid loss: 789.29245762
Iter-195, train loss: 4.35029513, valid loss: 784.82693523
Iter-196, train loss: 4.34508867, valid loss: 783.22302915
Iter-197, train loss: 4.33994122, valid loss: 787.51120319
Iter-198, train loss: 4.33485174, valid loss: 803.80039163
Iter-199, train loss: 4.32981921, valid loss: 820.00379433
Iter-200, train loss: 4.32484265, valid loss: 839.09570180
Out[17]:
<__main__.GRU at 0x7f143f5a0b70>